【題目】下列命題:
①相等的角是對頂角;②同旁內(nèi)角互補(bǔ)
③負(fù)數(shù)沒有算術(shù)平方根;④平方根等于它本身的數(shù)是0和1.
其中假命題的個數(shù)是( )
A.1個B.2個C.3個D.4個
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】矩形紙片ABCD的邊長AB=8,AD=4,將矩形紙片沿EF折疊,使點A與點C重合,折疊后在某一面著色(如圖),則著色部分的面積為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在數(shù)學(xué)課上,同學(xué)們已經(jīng)探究過“經(jīng)過已知直線外一點作這條直線的垂線”的尺規(guī)作圖過程:
已知:直線和外一點 求作:直線的垂線,使它經(jīng)過點. 做法:如圖:(1)在直線上任取兩點、; (2)分別以點、為圓心,,長為半徑畫弧,兩弧相交于點; (3)作直線. |
參考以上材料作圖的方法,解決以下問題:
(1)以上材料作圖的依據(jù)是 .
(3)已知:直線和外一點,
求作:,使它與直線相切。(尺規(guī)作圖,不寫做法,保留作圖痕跡,并把作圖痕跡用黑色簽字筆描黑)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知二次函數(shù)的圖象與軸交于點,點,與軸交于點.
(1)求二次函數(shù)的表達(dá)式;
(2)連接,若點在線段上運(yùn)動(不與點重合),過點作,交于點,當(dāng)面積最大時,求N點的坐標(biāo);
(3)連接,在(2)的結(jié)論下,求與的數(shù)量關(guān)系.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在一次數(shù)學(xué)興趣小組活動中,李燕和劉凱兩位同學(xué)設(shè)計了如圖所示的兩個轉(zhuǎn)盤做游戲(每個轉(zhuǎn)盤被分成面積相等的幾個扇形,并在每個扇形區(qū)域內(nèi)標(biāo)上數(shù)字).游戲規(guī)則如下:兩人分別同時轉(zhuǎn)運(yùn)甲、乙轉(zhuǎn)盤,轉(zhuǎn)盤停止后,若指針?biāo)竻^(qū)域內(nèi)兩數(shù)和小于12,則李燕獲勝;若指針?biāo)竻^(qū)域內(nèi)兩數(shù)和等于12,則為平局;若指針?biāo)竻^(qū)域內(nèi)兩數(shù)和大于12,則劉凱獲勝(若指針停在等分線上,重轉(zhuǎn)一次,直到指針指向某一份內(nèi)為止).
(1)請用列表或畫樹狀圖的方法表示出上述游戲中兩數(shù)和的所有可能的結(jié)果;
(2)分別求出李燕和劉凱獲勝的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】操作與證明:
如圖1,把一個含45°角的直角三角板ECF和一個正方形ABCD擺放在一起,使三角板的直角頂點和正方形的頂點C重合,點E、F分別在正方形的邊CB、CD上,連接AF.取AF中點M,EF的中點N,連接MD、MN.
(1)連接AE,求證:△AEF是等腰三角形;
猜想與發(fā)現(xiàn):
(2)在(1)的條件下,請判斷線段MD與MN的關(guān)系,得出結(jié)論;
結(jié)論:DM、MN的關(guān)系是:;
拓展與探究:
(3)如圖2,將圖1中的直角三角板ECF繞點C旋轉(zhuǎn)180°,其他條件不變,則(2)中的結(jié)論還成立嗎?若成立,請加以證明;若不成立,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AN是⊙M的直徑,NB∥x軸,AB交⊙M于點C.
(1)若點A(0,6),N(0,2),∠ABN=30°,求點B的坐標(biāo);
(2)若D為線段NB的中點,求證:直線CD是⊙M的切線.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知二次函數(shù)y=ax2+bx+4的圖象與x軸交于點B(-2,0),點C(8,0),與y軸交于點A.
(1)求二次函數(shù)y=ax2+bx+4的表達(dá)式;
(2)連接AC,AB,若點N在線段BC上運(yùn)動(不與點B,C重合),過點N作NM∥AC,交AB于點M,當(dāng)△AMN面積最大時,求N點的坐標(biāo);
(3)連接OM,在(2)的結(jié)論下,求OM與AC的數(shù)量關(guān)系.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】中華文明,源遠(yuǎn)流長;中華漢字,寓意深廣.為傳承中華優(yōu)秀傳統(tǒng)文化,某校團(tuán)委組織了一次全校3000名學(xué)生參加的“漢字聽寫”大賽.為了解本次大賽的成績,校團(tuán)委隨機(jī)抽取了其中200名學(xué)生的成績作為樣本進(jìn)行統(tǒng)計,制成如下不完整的統(tǒng)計圖表:
根據(jù)所給信息,解答下列問題:
(1)m= ,n= ;
(2)補(bǔ)全頻數(shù)分布直方圖;
(3)這200名學(xué)生成績的中位數(shù)會落在 分?jǐn)?shù)段;
(4)若成績在90分以上(包括90分)為“優(yōu)”等,請你估計該校參加本次比賽的3000名學(xué)生中成績是“優(yōu)”等的約有多少人?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com