【題目】如圖,已知的半徑為1,,是的兩條弦,且,延長交于點,連接,,若,則=__________.
【答案】
【解析】
可證△AOB≌△AOC,推出∠ACO=∠ABD,OA=OC,∠OAC=∠ACO=∠ABD,∠ADO=∠ADB,即可證明△OAD∽△ABD;依據(jù)對應(yīng)邊成比例,設(shè)OD=x,表示出AB、AD,根據(jù)AD2=ABDC,列方程求解即可.
解:在△AOB和△AOC中,
∵AB=AC,OB=OC,OA=OA,
∴△AOB≌△AOC(SSS),
∴∠ABO=∠ACO,
∵OA=OC,
∴∠ACO=∠OAD,
∵∠ADO=∠BDA,
∴△ADO∽△BDA,
∴ ,
設(shè)OD=x,則BD=1+x,
∴,
∴AD= ,AB= ,
∵DC=AC-AD=AB-AD,AD2=ABDC,
()2═(-),
整理得:x2+x-1=0,
解得:x= 或x=(舍去),
因此OD=,
故答案為:.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為弘揚傳統(tǒng)文化,某校開展了“傳承經(jīng)典文化,閱讀經(jīng)典名著”活動.為了解七、八年級學(xué)生(七、八年級各有600名學(xué)生)的閱讀效果,該校舉行了經(jīng)典文化知識競賽.現(xiàn)從兩個年級各隨機抽取20名學(xué)生的競賽成績(百分制)進行分析,過程如下:
收集數(shù)據(jù):
七年級:79,85,73,80,75,76,87,70,75,94,75,79,81,71,75,80,86,59,83,77.
八年級:92,74,87,82,72,81,94,83,77,83,80,81,71,81,72,77,82,80,70,41.
整理數(shù)據(jù):
七年級 | 0 | 1 | 0 | a | 7 | 1 |
八年級 | 1 | 0 | 0 | 7 | b | 2 |
分析數(shù)據(jù):
平均數(shù) | 眾數(shù) | 中位數(shù) | |
七年級 | 78 | 75 | |
八年級 | 78 | 80.5 |
應(yīng)用數(shù)據(jù):
(1)由上表填空:a= ,b= ,c= ,d= .
(2)估計該校七、八兩個年級學(xué)生在本次競賽中成績在90分以上的共有多少人?
(3)你認為哪個年級的學(xué)生對經(jīng)典文化知識掌握的總體水平較好,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)的圖象經(jīng)過三點(1,0),(-6,0)(0,-3).
(1)求該二次函數(shù)的解析式.
(2)若反比例函數(shù)的圖象與二次函數(shù)的圖象在第一象限內(nèi)交于點A(),落在兩個相鄰的正整數(shù)之間,請求出這兩個相鄰的正整數(shù).
(3)若反比例函數(shù)的圖象與二次函數(shù)的圖象在第一象限內(nèi)的交點為B,點B的橫坐標(biāo)為m,且滿足3<m<4,求實數(shù)k的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,拋物線y=ax2+bx+c的頂點坐標(biāo)為(2,9),與y軸交于點A(0,5),與x軸交于點E,B.
(1)求二次函數(shù)y=ax2+bx+c的解析式;
(2)過點A作AC平行于x軸,交拋物線于點C,點P為拋物線上的一點(點P在AC上方),作PD平行于y軸交AB于點D,問當(dāng)點P在何位置時,線段PD最長?并求出最大值;
(3)若點M在拋物線上,點N在其對稱軸上,使得以A,E,N,M為頂點的四邊形是平行四邊形,求點M的坐標(biāo).(請直接寫出結(jié)果)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AB=AC,以AB為直徑作半圓O,交BC于點D,交AC于點E.
(1)求證:BD=CD.
(2)若弧DE=50°,求∠C的度數(shù).
(3)過點D作DF⊥AB于點F,若BC=8,AF=3BF,求弧BD的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】 如圖所示,已知二次函數(shù)y=ax2+bx+c的圖象與x軸交于A,B兩點,與y軸交于點C,對稱軸為直線x=1.直線y=﹣x+c與拋物線y=ax2+bx+c交于C,D兩點,D點在x軸下方且橫坐標(biāo)小于3,則下列結(jié)論:①a﹣b+c<0;②2a+b+c>0;③x(αx+b)≤a+b;④a>﹣1.其中正確的有( 。
A.4個B.3個C.2個D.1個
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,吊車在水平地面上吊起貨物時,吊繩BC與地面保持垂直,吊臂AB與水平線的夾角為64°,吊臂底部A距地面1.5m.
(1)當(dāng)?shù)醣鄣撞?/span>A與貨物的水平距離AC為5m時,求吊臂AB的長;
(2)如果該吊車吊臂的最大長度AD為20m,那么從地面上吊起貨物的最大高度是多少?(吊鉤的長度與貨物的高度忽略不計,計算結(jié)果精確到0.1m,參考數(shù)據(jù):sin64°≈0.90,cos64°≈0.44,tan64°≈2.05)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知四邊形ABCD內(nèi)接于圓,對角線AC與BD相交于點E,F在AC上,AB=AD,∠BFC=∠BAD=2∠DFC .
(1)若∠DFC=40,求∠CBF的度數(shù).
(2)求證: CD⊥DF .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在菱形中,,.動點從點出發(fā),沿邊以每秒1個單位長度的速度運動到點時停止,連接,點與點關(guān)于直線對稱,連接,,設(shè)運動時間為(秒).
(1)菱形對角線的長為 ;
(2)當(dāng)點恰在上時,求t的值;
(3)當(dāng)時,求的周長;
(4)直接寫出在整個運動過程中,點運動的路徑長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com