【題目】如圖,我們把一個半圓與拋物線的一部分圍成的封閉圖形稱為“果圓”.已知點A、B、C、D分別是“果圓”與坐標軸的交點,AB為半圓的直徑,拋物線的解析式為y=x2﹣2x﹣3,求這個“果圓”被y軸截得的線段CD的長.

【答案】這個“果圓”被y軸截得的線段CD的長3+

【解析】試題分析:連接AC,BC,有拋物線的解析式可求出AB,C的坐標,進而求出AO,BO,DO的長,在直角三角形ACB中,利用射影定理可求出CO的長,進而可求出CD的長.

試題解析:連接AC,BC

∵拋物線的解析式為y=(x-1)2-4,

∴點D的坐標為(03),

OD的長為3,

設(shè)y=0,0=(x-1)2-4,

解得:x=13,

A(10),B(30)

AO=1,BO=3

AB為半圓的直徑,

∴∠ACB=90°

COAB,

CO2=AOBO=3,

CO=

CD=CO+OD=3+,

故答案為:3+.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知二次函數(shù)y=ax2+bx+c的圖象如圖所示,它與x軸的兩個交點分別為(﹣1,0),(3,0).對于下列命題:①b﹣2a=0;②abc<0;③4a+2b+c<0;④8a+c>0.其中正確的有( 。

A. 3個 B. 2個 C. 1個 D. 0個

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一元二次方程x2﹣16=0的根是( )
A.x=2
B.x=4
C.x1=2,x2=﹣2
D.x1=4,x2=﹣4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某超市一月份的營業(yè)額為36萬元,三月份的營業(yè)額為48萬元,設(shè)每月的平均增長率為x,則可列方程為( )
A.48(1﹣x)2=36
B.48(1+x)2=36
C.36(1﹣x)2=48
D.36(1+x)2=48

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線AB與直線CD相交于點O,EO⊥AB,OF平分∠AOC,

(1)請寫出∠EOC的余角;
(2)若∠BOC=40°,求∠EOF的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知線段AB,
①尺規(guī)作圖:反向延長AB到點C,使AC=AB;
②若點M是AC中點,點N是BM中點,MN=3cm,求AB的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,把RtABC放在直角坐標系內(nèi),其中∠CAB=90°,BC=5,點AB的坐標分別為(1,0),(4,0),將△ABC沿x軸向右平移,當點C落在直線y=2x-6上時,線段BC掃過的面積為________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知x=1是一元二次方程(a﹣2)x2+(a2﹣3)x﹣a+1=0的一個根,求a的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,B處在A處的西南方向,C處在A處的南偏東15°方向,若∠ACB=90°,則C處在B處的(

A.北偏東75°方向
B.北偏東65°方向
C.北偏東60°方向
D.北偏東30°方向

查看答案和解析>>

同步練習(xí)冊答案