【題目】已知下列關(guān)于的分式方程:

方程1. , 方程2. , 方程3. , ……,方程n,

1】填空:分式方程1的解為 ,分式方程2的解為 ;

2】解分式方程3

3】根據(jù)上述方程的規(guī)律及解的特點,直接寫出方程n及它的解.

【答案】

1=2=2

2】方程33x+2=4x+1,x=64

=2檢驗:當=2時,公分母不為0=2是原方程的解;

3】方程,解得=2

【解析】1)利用解分式方程的步驟可解得方程1,2的解;
2)先去分母,方程兩邊同乘以,將分式方程化為整式方程,求解即可;
3)根據(jù)上述方程的規(guī)律可得形如: 的解為

1)方程兩邊同乘以
得:
解得
方程兩邊同乘以
得:
解得
2)方程兩邊同乘以
得:
解得

檢驗:當時,
是原方程的解;
3)方程n
解得
故答案為:

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】《如果想毀掉一個孩子,就給他一部手機!》這是2017年微信圈一篇熱傳的文章.國際上,法國教育部宣布從 2018 9月新學(xué)期起小學(xué)和初中禁止學(xué)生使用手機.為了解學(xué)生手機使用情況,某學(xué)校開展了手機伴我健康行主題活動,他們隨機抽取部分學(xué)生進行使用手機目的每周使用手機的時間的問卷調(diào)查,并繪制成如圖①,②的 統(tǒng)計圖,已知查資料的人數(shù)是 40人.請你根據(jù)以上信息解答下列問題:

(1)在扇形統(tǒng)計圖中,玩游戲對應(yīng)的百分比為______,圓心角度數(shù)是______度;

(2)補全條形統(tǒng)計圖;

(3)該校共有學(xué)生2100人,估計每周使用手機時間在2 小時以上(不含2小時)的人數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某中學(xué)對全校學(xué)生進行文明禮儀知識測試,為了了解測試結(jié)果,隨機抽取部分學(xué)生的成績進行分析,將成績分為三個等級:不合格、一般、優(yōu)秀,并繪制成如下兩幅統(tǒng)計圖(不完整).請你根據(jù)圖中所給的信息解答下列問題:

1)請將以上兩幅統(tǒng)計圖補充完整;

2)在扇形統(tǒng)計圖中,表示“不合格”的扇形的圓心角度數(shù)為_________

3)若一般優(yōu)秀均被視為達標成績,則該校被抽取的學(xué)生中有________人達標.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,在△ABC中,∠ACB=90°,AC=BC,點DBC的中點,AB =DE,BEAC

1)求證:△ABC≌△DEB;

2)連結(jié)AD、AE、CE,如圖2

①求證:CE是∠ACB的角平分線;

②請判斷△ABE是什么特殊形狀的三角形,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABCD中,BF平分∠ABC,交AD于點F,CE平分∠BCD,交AD于點E,AB=6,EF=2,則BC長為( )

A.8
B.10
C.12
D.14

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知點A、C分別在∠GBE的邊BG、BE上,且AB=AC,ADBE,∠GBE的平分線與AD交于點D,連接CD

1)求證:AB=AD;

2)求證:CD平分∠ACE

3)猜想∠BDC與∠BAC之間有何數(shù)量關(guān)系?并對你的猜想加以證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知關(guān)于x的不等式x﹣1.

(1)當m=1時,求該不等式的解集;

(2)m取何值時,該不等式有解,并求出解集.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小明在銀行存入一筆零花錢,已知這種儲蓄的年利率為n%,若設(shè)到期后的本息和(本金+利息)y元,存入的時間為x()

(1)下列圖中,哪個圖像更能反映yx之間的函數(shù)關(guān)系?從圖中你能看出存入的本金是多少元?一年后的本息和是多少元?

(2)根據(jù)(1)的圖像,求出yx的函數(shù)表達式(不要求寫出自變量取值范圍),并求出兩年后的本息和.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】二次函數(shù)y=x2+5x+4,下列說法正確的是(
A.拋物線的開口向下
B.當x>﹣3時,y隨x的增大而增大
C.二次函數(shù)的最小值是﹣2
D.拋物線的對稱軸是x=﹣

查看答案和解析>>

同步練習冊答案