【題目】如圖,等邊三角形的邊長為,且其三個(gè)頂點(diǎn)均在拋物線上.

1)求拋物線的解析式;

2)若過原點(diǎn)的直線與直線分別交拋物線于點(diǎn),

①當(dāng)時(shí),試求的面積;

②試證明:不論實(shí)數(shù)取何值,直線總是經(jīng)過一定點(diǎn).

【答案】1;(2)①20;②詳見解析

【解析】

1)如圖,由題意可得OB=ABO=60°,然后在RtBOF中,利用解直角三角形的知識(shí)求出BFOF的長,進(jìn)而可得點(diǎn)B坐標(biāo),然后代入拋物線的解析式即可求出結(jié)果;

2)①先解方程組求出點(diǎn)C、D的坐標(biāo),再利用待定系數(shù)法求出直線CD的解析式,然后即可求出直線軸的交點(diǎn),再根據(jù)計(jì)算即可;

②先解方程組求出點(diǎn)CD的坐標(biāo),再利用待定系數(shù)法求出直線CD的解析式,然后即可求出直線軸的交點(diǎn),進(jìn)而可得結(jié)論.

解:(1)如圖,等邊△的邊長為,

OB=ABO=60°,

則在RtBOF中,BF=4,,

,

又點(diǎn)在拋物線上,

,解得:,

故所求的解析式為;

2)①解方程組,得,,∴,

解方程組,得,,∴

設(shè)直線的解析式為,

,解得:,

所以直線的解析式為,

設(shè)直線軸交于點(diǎn),則,如圖,

,

;

②解方程組,得,∴

解方程組,得,,∴,

設(shè)直線解析式為

,解得:,

所以直線的解析式為,

所以不論實(shí)數(shù)取何值,直線總過定點(diǎn)

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,將正方形繞點(diǎn)逆時(shí)針旋轉(zhuǎn)后得到正方形,依此方式,繞點(diǎn)連續(xù)旋轉(zhuǎn)次得到正方,如果點(diǎn)的坐標(biāo)為,那么的坐標(biāo)為(  )

A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線AB//CD,直線EFAB于點(diǎn)E,交CD于點(diǎn)F,EP平分∠AEF,FP平分∠CFE,∠BEPα,∠DFPβ,則aβ( )

A.180°B.225°C.270°D.315°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知,投擲一枚均勻的硬幣,落地時(shí)正面或反面向上的可能性相同.有甲、乙兩人做投硬幣實(shí)驗(yàn),他們分別投硬幣100次,結(jié)果“正面向上”的次數(shù)為:甲60次、乙40次.

(1)求甲、乙做投硬幣實(shí)驗(yàn)“正面向上”的頻率各是多少?

(2)若甲、乙同時(shí)做第101次投硬幣實(shí)驗(yàn),求“正面都向上”的概率

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知二次函數(shù)的圖象如圖所示,給出下列四個(gè)結(jié)論:①;②;③;④.其中正確結(jié)論的個(gè)數(shù)是( )

A.個(gè)B.個(gè)C.個(gè)D.個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖ABC內(nèi)接于O,BDO的直徑,點(diǎn)PBD延長線上一點(diǎn),且PAO的切線.

1)求證:;

2)若,求O的直徑.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形OABC是矩形,四邊形ADEF是正方形,點(diǎn)A、Dx軸的負(fù)半軸上,點(diǎn)Cy軸的正半軸上,點(diǎn)FAB上,點(diǎn)B、E在反比例函數(shù)yk為常數(shù),k0)的圖象上,正方形ADEF的面積為4,且BF2AF,則k值為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在一張矩形ABCD紙片中,AD=30,AB=25,先將這張紙片沿著過點(diǎn)A的直線折疊,使得點(diǎn)B落在矩形的對稱軸上,折痕交矩形的邊于點(diǎn)E,則折痕AE的長為_________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,邊長為的正方形的邊軸負(fù)半軸上,點(diǎn)在第三象限內(nèi),點(diǎn)的坐標(biāo)為,經(jīng)過點(diǎn)的拋物線軸于點(diǎn),其頂點(diǎn)為

1)求拋物線的解析式;

2)若軸左側(cè)拋物線上一點(diǎn)關(guān)于軸的對稱點(diǎn)恰好落在直線上,求點(diǎn)的坐標(biāo);

3)連接,,,請你探究在軸左側(cè)的拋物線上,是否存在點(diǎn),使?若存在,求出點(diǎn)的坐標(biāo);若不存在,說明理由.

查看答案和解析>>

同步練習(xí)冊答案