【題目】勾股定理有著悠久的歷史,它曾引起很多人的興趣,1955年希臘發(fā)型了二枚以勾股圖為背景的郵票.所謂勾股圖是指以直角三角形的三邊為邊向外作正方形構(gòu)成,它可以驗(yàn)證勾股定理.在如圖的勾股圖中,已知∠ACB=90°,∠BAC=30°,AB=4.作△PQO使得∠O=90°,點(diǎn)Q在在直角坐標(biāo)系y軸正半軸上,點(diǎn)P在x軸正半軸上,點(diǎn)O與原點(diǎn)重合,∠OQP=60°,點(diǎn)H在邊QO上,點(diǎn)D、E在邊PO上,點(diǎn)G、F在邊PQ上,那么點(diǎn)P坐標(biāo)為

【答案】(7 +6,0)
【解析】延長(zhǎng)BAQR于點(diǎn)M,連接AR,AP,

在△ABC與△GFC中,

又∵

∴△QHG是等邊三角形.

中,

中,

∴點(diǎn)P的坐標(biāo)為

所以答案是:


【考點(diǎn)精析】關(guān)于本題考查的銳角三角函數(shù)的定義,需要了解銳角A的正弦、余弦、正切、余切都叫做∠A的銳角三角函數(shù)才能得出正確答案.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,AB為O的直徑,C、D為O上的兩點(diǎn),BAC=DAC,過(guò)點(diǎn)C做直線EFAD,交AD的延長(zhǎng)線于點(diǎn)E,連接BC.

(1)求證:EF是O的切線;

(2)若DE=1,BC=2,求劣弧的長(zhǎng)l.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在一次函數(shù)y=x+b的圖象上有一點(diǎn)A,將點(diǎn)A沿該直線移動(dòng)到點(diǎn)B處,若點(diǎn)B的橫坐標(biāo)減去點(diǎn)A的橫坐標(biāo)的差為1,則點(diǎn)B的縱坐標(biāo)減去點(diǎn)A的縱坐標(biāo)的差為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】PM2.5是指大氣中直徑小于或等于2.5微米的顆粒物,也稱(chēng)為可入肺顆粒物.已知1微米相當(dāng)于1毫米的千分之一,那么數(shù)據(jù)2.5微米用科學(xué)記數(shù)法表示為米.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】把多項(xiàng)式3x2﹣12因式分解的結(jié)果是

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知:在四邊形ABCD中,點(diǎn)EAD上,∠BCE=∠ACD=90°,∠BAC=∠DBCCE

(1)求證:ACCD;
(2)若ACAE , 求∠DEC的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,A(0,4)是直角坐標(biāo)系y軸上一點(diǎn),動(dòng)點(diǎn)P從原點(diǎn)O出發(fā),沿x軸正半軸運(yùn)動(dòng),速度為每秒1個(gè)單位長(zhǎng)度,以P為直角頂點(diǎn)在第一象限內(nèi)作等腰RtAPB.設(shè)P點(diǎn)的運(yùn)動(dòng)時(shí)間為t秒.

(1)若AB//x軸,如圖一,求t的值;
(2)當(dāng)t=3時(shí),坐標(biāo)平面內(nèi)有一點(diǎn)M(不與A重合) , 使得以M、PB為頂點(diǎn)的三角形和△ABP全等,請(qǐng)直接寫(xiě)出點(diǎn)M的坐標(biāo);
(3)設(shè)點(diǎn)A關(guān)于x軸的對(duì)稱(chēng)點(diǎn)為 ,連接 ,在點(diǎn)P運(yùn)動(dòng)的過(guò)程中,∠ 的度數(shù)是否會(huì)發(fā)生變化,若不變,請(qǐng)求出∠ 的度數(shù),若改變,請(qǐng)說(shuō)明理由。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)y=kx的圖象經(jīng)過(guò)點(diǎn)A(﹣2,2),則k=__

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】永州市是一個(gè)降水豐富的地區(qū),今年4月初,某地連續(xù)降雨導(dǎo)致該地某水庫(kù)水位持續(xù)上漲,下表是該水庫(kù)4月1日~4月4日的水位變化情況:

日期x

1

2

3

4

水位y(米)

20.00

20.50

21.00

21.50

(1)請(qǐng)建立該水庫(kù)水位y與日期x之間的函數(shù)模型;

(2)請(qǐng)用求出的函數(shù)表達(dá)式預(yù)測(cè)該水庫(kù)今年4月6日的水位;

(3)你能用求出的函數(shù)表達(dá)式預(yù)測(cè)該水庫(kù)今年12月1日的水位嗎?

查看答案和解析>>

同步練習(xí)冊(cè)答案