【題目】小強(qiáng)的媽媽想在自家的院子里用竹籬笆圍一個(gè)面積為4平方米的矩形小花園,媽媽問(wèn)九年級(jí)的小強(qiáng)至少需要幾米長(zhǎng)的竹籬笆(不考慮接縫).

小強(qiáng)根據(jù)他學(xué)習(xí)函數(shù)的經(jīng)驗(yàn)做了如下的探究.下面是小強(qiáng)的探究過(guò)程,請(qǐng)補(bǔ)充完整:

建立函數(shù)模型:

設(shè)矩形小花園的一邊長(zhǎng)為x米,籬笆長(zhǎng)為y米.則y關(guān)于x的函數(shù)表達(dá)式為________;列表(相關(guān)數(shù)據(jù)保留一位小數(shù)):

根據(jù)函數(shù)的表達(dá)式,得到了xy的幾組值,如下表:

x

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

y

17

10

8.3

8.2

8.7

9.3

10.8

11.6

描點(diǎn)、畫(huà)函數(shù)圖象:

如圖,在平面直角坐標(biāo)系xOy中,描出了以上表中各對(duì)對(duì)應(yīng)值為坐標(biāo)的點(diǎn),根據(jù)描出的點(diǎn)畫(huà)出該函數(shù)的圖象;

觀察分析、得出結(jié)論:

根據(jù)以上信息可得,當(dāng)x________時(shí),y有最小值.

由此,小強(qiáng)確定籬笆長(zhǎng)至少為________米.

【答案】見(jiàn)解析

【解析】

根據(jù)題意:一邊為x米,面積為4,則另一邊為米,籬笆長(zhǎng)為y=2x=2x,由x═(2+4可得當(dāng)x=2y有最小值,則可求籬笆長(zhǎng).

根據(jù)題意:一邊為x米,面積為4,則另一邊為米,籬笆長(zhǎng)為y=2x=2x

x2+2=2+4,∴x4,∴2x8,∴當(dāng)x=2時(shí),y有最小值為8,由此小強(qiáng)確定籬笆長(zhǎng)至少為8米.

故答案為:y=2x,28

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,拋物線yx22mx+m21x軸交于AB兩點(diǎn)(點(diǎn)A在點(diǎn)B左側(cè))

1)求拋物線的頂點(diǎn)坐標(biāo)(用含m的代數(shù)式表示);

2)求線段AB的長(zhǎng);

3)拋物線與y軸交于點(diǎn)C(點(diǎn)C不與原點(diǎn)O重合),若OAC的面積始終小于ABC的面積,求m的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,直線y=﹣x+4分別交x軸、y軸于A、B兩點(diǎn),P是反比例函數(shù)yx0),圖象上位于直線y=﹣x+4下方的一點(diǎn),過(guò)點(diǎn)Px軸的垂線,垂足為點(diǎn)M,交AB于點(diǎn)E,過(guò)點(diǎn)Py軸的垂線,垂足為點(diǎn)N,交AB于點(diǎn)F,并且AFBE4

1)求k的值;

2)若反比例函數(shù)y與一次函數(shù)y=﹣x+4交于C、D兩點(diǎn),求三角形OCD的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,四邊形ABCD的對(duì)角線ACBD于點(diǎn)E,AB=BC,F為四邊形ABCD外一點(diǎn),且∠FCA=90°,CBF=DCB

1)求證:四邊形DBFC是平行四邊形;

2)如果BC平分∠DBFCDB=45°,BD=2,求AC的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,點(diǎn)Ax1y1),Bx2y2),若x1x2+y1y20,且A,B均不為原點(diǎn),則稱AB互為正交點(diǎn).比如:A1,1),B2,﹣2),其中1×2+1×(﹣2)=0,那么AB互為正交點(diǎn).

1)點(diǎn)PQ互為正交點(diǎn),P的坐標(biāo)為(﹣2,3),

如果Q的坐標(biāo)為(6,m),那么m的值為多少;

如果Q的坐標(biāo)為(x,y),求yx之間的關(guān)系式;

2)點(diǎn)MN互為正交點(diǎn),直接寫(xiě)出∠MON的度數(shù);

3)點(diǎn)C,D是以(02)為圓心,半徑為2的圓上的正交點(diǎn),以線段CD為邊,構(gòu)造正方形CDEF,圓心F在正方形CDEF的外部,求線段OE長(zhǎng)度的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】直線與雙曲線交于點(diǎn),點(diǎn),與坐標(biāo)軸分別交于點(diǎn)和點(diǎn),

1)求直線的解析式.

2)在軸上求出點(diǎn),使以為頂點(diǎn)的三角形與相似.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】為了增強(qiáng)學(xué)生體質(zhì),某校對(duì)學(xué)生設(shè)置了體操、球類、跑步、游泳等課外體育活動(dòng),為了了解學(xué)生對(duì)這些項(xiàng)目的喜愛(ài)情況,在全校范圍內(nèi)隨機(jī)抽取了若干名學(xué)生,對(duì)他們最喜愛(ài)的體育項(xiàng)目(每人只選一項(xiàng))進(jìn)行了問(wèn)卷調(diào)查,將數(shù)據(jù)進(jìn)行了統(tǒng)計(jì)并繪制成了如圖所示的頻數(shù)分布直方圖和扇形統(tǒng)計(jì)圖(均不完整).

1)在這次問(wèn)卷調(diào)查中,一共抽查了多少名學(xué)生?

2)補(bǔ)全頻數(shù)分布直方圖,求出扇形統(tǒng)計(jì)圖中體操所對(duì)應(yīng)的圓心角度數(shù);

3)估計(jì)該校名學(xué)生中有多少人喜愛(ài)跑步項(xiàng)目.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】若平面直角坐標(biāo)系內(nèi)的點(diǎn)M滿足橫、縱坐標(biāo)都為整數(shù),則把點(diǎn)M叫做“整點(diǎn)”.例如:P(1,0)、Q(2,﹣2)都是“整點(diǎn)”.拋物線ymx2﹣4mx+4m﹣2(m>0)與x軸交于AB兩點(diǎn),若該拋物線在A、B之間的部分與線段AB所圍成的區(qū)域(包括邊界)恰有七個(gè)整點(diǎn),則m的取值范圍是_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某市在黨中央實(shí)施精準(zhǔn)扶貧政策的號(hào)召下,大力開(kāi)展科技扶貧工作,幫助農(nóng)民組建農(nóng)副產(chǎn)品銷售公司,某農(nóng)副產(chǎn)品的年產(chǎn)量不超過(guò)100萬(wàn)件,該產(chǎn)品的生產(chǎn)費(fèi)用y(萬(wàn)元)與年產(chǎn)量x(萬(wàn)件)之間的函數(shù)圖象是頂點(diǎn)為原點(diǎn)的拋物線的一部分(如圖①所示);該產(chǎn)品的銷售單價(jià)z(元/件)與年銷售量x(萬(wàn)件)之間的函數(shù)圖象是如圖②所示的一條線段,生產(chǎn)出的產(chǎn)品都能在當(dāng)年銷售完,達(dá)到產(chǎn)銷平衡,所獲毛利潤(rùn)為w萬(wàn)元.(毛利潤(rùn)=銷售額﹣生產(chǎn)費(fèi)用)

(1)請(qǐng)直接寫(xiě)出yx以及zx之間的函數(shù)關(guān)系式;

(2)求wx之間的函數(shù)關(guān)系式;并求年產(chǎn)量多少萬(wàn)件時(shí),所獲毛利潤(rùn)最大?最大毛利潤(rùn)是多少?

(3)由于受資金的影響,今年投入生產(chǎn)的費(fèi)用不會(huì)超過(guò)360萬(wàn)元,今年最多可獲得多少萬(wàn)元的毛利潤(rùn)?

查看答案和解析>>

同步練習(xí)冊(cè)答案