【題目】如圖,直線y=﹣x+4分別交x軸、y軸于A、B兩點(diǎn),P是反比例函數(shù)yx0),圖象上位于直線y=﹣x+4下方的一點(diǎn),過點(diǎn)Px軸的垂線,垂足為點(diǎn)M,交AB于點(diǎn)E,過點(diǎn)Py軸的垂線,垂足為點(diǎn)N,交AB于點(diǎn)F,并且AFBE4

1)求k的值;

2)若反比例函數(shù)y與一次函數(shù)y=﹣x+4交于C、D兩點(diǎn),求三角形OCD的面積.

【答案】(1)2;(2)4.

【解析】

1)由直線y=﹣x+4x軸、y軸于AB兩點(diǎn),即可得出OABOBA45°,進(jìn)而即可得出OMBEsin∠OBAONAFsin∠OAB,再結(jié)合AFBE4即可得出OMON2,此題得解;

2)求出點(diǎn)C、D的坐標(biāo),然后連接OC、OD,根據(jù)SOCDSAOBSAODSBOC,根據(jù)三角形的面積公式列式計(jì)算即可得解;

解:(1直線y=﹣x+4x軸、y軸于A、B兩點(diǎn),

∴∠OABOBA45°,

OMBEsin∠OBA,ONAFsin∠OAB

AFBE4,

OMONBEAF2

kOMON2

2直線y=﹣x+4x軸、y軸于A、B兩點(diǎn),

A40),B04),

,

C2,2+),D2+,2),

SOCDSAOBSAODSBOC

×4×4×4×2)﹣×4×2),

4

故答案為:(12;(24.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在凸四邊形ABCD中,AB=BC=CD,∠ABC+∠BCD=240°.設(shè)∠ABC=α.

(1)利用尺規(guī),以CD為邊在四邊形內(nèi)部作等邊△CDE.(保留作圖痕跡,不需要寫作法)

(2)連接AE,判斷四邊形ABCE的形狀,并說明理由.

(3)求證:∠ADC=α;

(4)若CD=6,取CD的中點(diǎn)F,連結(jié)AF,當(dāng)∠ABC等于多少度時(shí),AF最大,最大值為多少.(直接寫出答案,不需要說明理由).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某商場甲、乙、丙三名業(yè)務(wù)員2018年前5個(gè)月的銷售額(單位:萬元)如下表:

月份

銷售額

人員

1

2

3

4

5

6

9

10

8

8

5

7

8

9

9

5

9

10

5

11

1)根據(jù)上表中的數(shù)據(jù),將下表補(bǔ)充完整:

統(tǒng)計(jì)值

數(shù)值

人員

平均數(shù)(萬元)

眾數(shù)(萬元)

中位數(shù)(萬元)

方差

8

8

1.76

7.6

8

2.24

8

5

2)甲、乙、丙三名業(yè)務(wù)員都說自己的銷售業(yè)績好,你贊同誰的說法?請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖RtABC,C=90°,點(diǎn)DBC邊的中點(diǎn),BD=2,tanB=

1)求ADAB的長;

2)求sin∠BAD的值

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知O的直徑CD4,ABO的弦,ABCD,垂足為M,且AB2,則∠ACD等于( 。

A.30°B.60°C.30°或60°D.45°或60°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】近年來由于空氣質(zhì)量的變化,以及人們對自身健康的關(guān)注程度不斷提高,空氣凈化器成為很多家庭的新電器.某品牌的空氣凈化器廠家為進(jìn)一步了解市場,制定生產(chǎn)計(jì)劃,根據(jù)2016年下半年銷售情況繪制了如下統(tǒng)計(jì)圖,其中同比增長率=(1)×100%,下面有四個(gè)推斷:

2016年下半年各月銷售量均比2015年同月銷售量增多

第四季度銷售量占下半年銷售量的七成以上

下半年月均銷售量約為16萬臺(tái)

下半年月銷售量的中位數(shù)不超過10萬臺(tái)

其中合理的是(

A.①②B.①④C.②③D.③④

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形ABCD中,ABDC,∠B90°,FDC上一點(diǎn),且ABFC,EAD上一點(diǎn),ECAF于點(diǎn)G,EAEG

求證:EDEC

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小強(qiáng)的媽媽想在自家的院子里用竹籬笆圍一個(gè)面積為4平方米的矩形小花園,媽媽問九年級的小強(qiáng)至少需要幾米長的竹籬笆(不考慮接縫).

小強(qiáng)根據(jù)他學(xué)習(xí)函數(shù)的經(jīng)驗(yàn)做了如下的探究.下面是小強(qiáng)的探究過程,請補(bǔ)充完整:

建立函數(shù)模型:

設(shè)矩形小花園的一邊長為x米,籬笆長為y米.則y關(guān)于x的函數(shù)表達(dá)式為________;列表(相關(guān)數(shù)據(jù)保留一位小數(shù)):

根據(jù)函數(shù)的表達(dá)式,得到了xy的幾組值,如下表:

x

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

y

17

10

8.3

8.2

8.7

9.3

10.8

11.6

描點(diǎn)、畫函數(shù)圖象:

如圖,在平面直角坐標(biāo)系xOy中,描出了以上表中各對對應(yīng)值為坐標(biāo)的點(diǎn),根據(jù)描出的點(diǎn)畫出該函數(shù)的圖象;

觀察分析、得出結(jié)論:

根據(jù)以上信息可得,當(dāng)x________時(shí),y有最小值.

由此,小強(qiáng)確定籬笆長至少為________米.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABO的直徑,CDO相切于點(diǎn)E,交AB的延長線于點(diǎn)D,連接BE,過點(diǎn)OOCBE,交O于點(diǎn)F,交切線于點(diǎn)C,連接AC.

(1)求證:ACO的切線;

(2)連接EF,當(dāng)∠D= °時(shí),四邊形FOBE是菱形.

查看答案和解析>>

同步練習(xí)冊答案