【題目】如圖所示,一次函數(shù)的圖象與反比例函數(shù)的圖象交于.
(1)求反比例函數(shù)和一次函數(shù)的解析式;
(2)在x軸上存在一點(diǎn)C,使為等腰三角形,求此時點(diǎn)C的坐標(biāo);
(3)根據(jù)圖象直接寫出使一次函數(shù)的值大于反比例函數(shù)的值的x的取值范圍.
【答案】(1),;(2),,,;(3)-12<x<0或x>3
【解析】
(1)因?yàn)榉幢壤瘮?shù)過A、B兩點(diǎn),所以可求其解析式和n的值,從而知B點(diǎn)坐標(biāo),進(jìn)而求一次函數(shù)解析式;
(2)分三種情況:OA=OC,AO=AC,CA=CO,分別求解即可;
(3)根據(jù)圖像得出一次函數(shù)圖像在反比例函數(shù)圖像上方時x的取值范圍即可.
解:(1)把A(3,4)代入,
∴m=12,
∴反比例函數(shù)是;
把B(n,-1)代入得n=12.
把A(3,4)、B(-12,1)分別代入y=kx+b中:
得,
解得,
∴一次函數(shù)的解析式為;
(2)∵A(3,4),△AOC為等腰三角形,OA=,
分三種情況:
①當(dāng)OA=OC時,OC=5,
此時點(diǎn)C的坐標(biāo)為,;
②當(dāng)AO=AC時,∵A(3,4),點(diǎn)C和點(diǎn)O關(guān)于過A點(diǎn)且垂直于x軸的直線對稱,
此時點(diǎn)C的坐標(biāo)為;
③當(dāng)CA=CO時,點(diǎn)C在線段OA的垂直平分線上,
過A作AD⊥x軸,垂足為D,
由題意可得:OD=3,AD=4,AO=5,設(shè)OC=x,則AC=x,
在△ACD中,
,
解得:x=,
此時點(diǎn)C的坐標(biāo)為;
綜上:點(diǎn)C的坐標(biāo)為:,,,;
(3)由圖得:
當(dāng)一次函數(shù)圖像在反比例函數(shù)圖像上方時,
-12<x<0或x>3,
即使一次函數(shù)的值大于反比例函數(shù)的值的x的取值范圍是:-12<x<0或x>3.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,的頂點(diǎn)A在反比例函數(shù)的圖像上,直線AB交y軸于點(diǎn)C,且點(diǎn)C的縱坐標(biāo)為5,過點(diǎn)A、B分別作y軸的垂線AE、BF,垂足分別為點(diǎn)E、F,且.
(1)若點(diǎn)E為線段OC的中點(diǎn),求k的值;
(2)若為等腰直角三角形,,其面積小于3.
①求證:;
②把稱為,兩點(diǎn)間的“ZJ距離”,記為,求的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在和中,,且,點(diǎn)在的內(nèi)部,連接,,和,并且.
(觀察猜想)
(1)如圖①,當(dāng)時,線段與的數(shù)量關(guān)系為_____,線段的數(shù)量關(guān)系為_______________;
(探究證明)
(2)如圖②,當(dāng)時,(1)中的結(jié)論是否依然成立?若成立,請給出證明,若不成立,請說明理由;
(拓展應(yīng)用)
(3)在(2)的條件下,當(dāng)點(diǎn)在線段上時,若,請直接寫出的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小云在學(xué)習(xí)過程中遇到一個函數(shù).下面是小云對其探究的過程,請補(bǔ)充完整:
(1)當(dāng)時,對于函數(shù),即,當(dāng)時,隨的增大而 ,且;對于函數(shù),當(dāng)時,隨的增大而 ,且;結(jié)合上述分析,進(jìn)一步探究發(fā)現(xiàn),對于函數(shù),當(dāng)時,隨的增大而 .
(2)當(dāng)時,對于函數(shù),當(dāng)時,與的幾組對應(yīng)值如下表:
0 | 1 | 2 | 3 | |||||
0 | 1 |
綜合上表,進(jìn)一步探究發(fā)現(xiàn),當(dāng)時,隨的增大而增大.在平面直角坐標(biāo)系中,畫出當(dāng)時的函數(shù)的圖象.
(3)過點(diǎn)(0,m)()作平行于軸的直線,結(jié)合(1)(2)的分析,解決問題:若直線與函數(shù)的圖象有兩個交點(diǎn),則的最大值是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,均為等邊三角形,邊長分別為,B、C、D三點(diǎn)在同一條直線上,則下列結(jié)論正確的________________.(填序號)
① ② ③為等邊三角形 ④ ⑤CM平分
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,已知點(diǎn)A,對點(diǎn)A作如下變換:
第一步:作點(diǎn)A關(guān)于x軸的對稱點(diǎn)A1;第二步:以O為位似中心,作線段OA1的位似圖形OA2,且相似比=q,則稱A2是點(diǎn)A的對稱位似點(diǎn).
(1)若A(2,3),q=2,直接寫出點(diǎn)A的對稱位似點(diǎn)的坐標(biāo);
(2)已知直線l:y=kx-2,拋物線C:y=-x2+mx-2(m>0).點(diǎn)N(,2k-2)在直線l上.
①當(dāng)k=時,判斷E(1,-1)是否是點(diǎn)N的對稱位似點(diǎn),請說明理由;
②若直線l與拋物線C交于點(diǎn)M(x1,y1)(x1≠0),且點(diǎn)M不是拋物線的頂點(diǎn),則點(diǎn)M的對稱位似點(diǎn)是否可能仍在拋物線C上?請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線y=ax2+bx+c(a≠0)的對稱軸為直線x=﹣1,給出下列結(jié)論:
①b2=4ac;②abc>0;③a>c;④4a﹣2b+c>0,其中正確的個數(shù)有( )
A.1個 B.2個 C.3個 D.4個
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某生產(chǎn)商存有1200千克產(chǎn)品,生產(chǎn)成本為150元/千克,售價為400元千克.因市場變化,準(zhǔn)備低價一次性處理掉部分存貨,所得貨款全部用來生產(chǎn)產(chǎn)品,產(chǎn)品售價為200元/千克.經(jīng)市場調(diào)研發(fā)現(xiàn),產(chǎn)品存貨的處理價格(元/千克)與處理數(shù)量(千克)滿足一次函數(shù)關(guān)系(),且得到表中數(shù)據(jù).
(千克) | (元/千克) |
200 | 350 |
400 | 300 |
(1)請求出處理價格(元千克)與處理數(shù)量(千克)之間的函數(shù)關(guān)系;
(2)若產(chǎn)品生產(chǎn)成本為100元千克,產(chǎn)品處理數(shù)量為多少千克時,生產(chǎn)產(chǎn)品數(shù)量最多,最多是多少?
(3)由于改進(jìn)技術(shù),產(chǎn)品的生產(chǎn)成本降低到了元/千克,設(shè)全部產(chǎn)品全部售出,所得總利潤為(元),若時,滿足隨的增大而減小,求的取值范圍
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在每個邊長都為的小正方形組成的網(wǎng)格中,小正方形的頂點(diǎn)叫做格點(diǎn).線段的端點(diǎn)均在格點(diǎn)上.
(1)線段的長度等于 ;
(2)將線段繞點(diǎn)逆時針旋轉(zhuǎn)得到,在圖中畫出,并連結(jié).
(3)在線段上確定一點(diǎn)連結(jié),使得與的面積比為.
說明:以上作圖只用無刻度的直尺畫圖,保留畫圖痕跡,不寫畫法.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com