分析 作A關(guān)于OB的對稱點(diǎn)D,過D作DM⊥OA于M,此時(shí)AN+MN的值最小,根據(jù)三角形面積求出AC,得出AD,證明△ADM∽△BOA求出AM,得出OM,再由平行線的性質(zhì)得出比例式求出MN即可.
解答 解:作A關(guān)于OB的對稱點(diǎn)D,過D作DM⊥OA于M交OB于N,如圖所示:
則此時(shí)AN+MN=DM的值最小,AD⊥OB,DC=AC,DM∥AB,
∵DN=AN,
∴AN+MN=DN+MN=DM,
∵B(8,4),
∴OB=$\sqrt{{8}^{2}+{4}^{2}}$=4$\sqrt{5}$,
∵△AOB的面積=$\frac{1}{2}$OA•AB=$\frac{1}{2}$OB•AC,
∴AC=$\frac{OA•AB}{OB}$=$\frac{8×4}{4\sqrt{5}}$=$\frac{8\sqrt{5}}{5}$,
∴AD=2AC=$\frac{16\sqrt{5}}{5}$,
∵DM∥AB,
∴∠ADM=∠BAC=∠AOB,
又∵∠AMD=∠BAO=90°,
∴△ADM∽△BOA,
∴$\frac{AM}{BA}=\frac{AD}{OB}$,
即$\frac{AM}{4}=\frac{\frac{16\sqrt{5}}{5}}{4\sqrt{5}}$,
解得:AM=$\frac{16}{5}$,
∴OM=OA-AM=8-$\frac{16}{5}$=$\frac{24}{5}$,
∵DM∥AB,
∴$\frac{MN}{OM}=\frac{AB}{OA}$=$\frac{4}{8}$=$\frac{1}{2}$,
∴MN=$\frac{1}{2}$OM=$\frac{12}{5}$,
∴點(diǎn)N的坐標(biāo)為($\frac{24}{5}$,$\frac{12}{5}$);
故答案為:($\frac{24}{5}$,$\frac{12}{5}$).
點(diǎn)評 本題考查了軸對稱-最短路線問題,勾股定理,三角形相似的判定和性質(zhì),關(guān)鍵是求出N點(diǎn)的位置,有一定難度.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{x}{y}$=$\frac{3}{4}$ | B. | 3y=4x | C. | $\frac{y+x}{y}$=$\frac{7}{4}$ | D. | $\frac{x}{4}$=$\frac{y}{3}$ |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com