【題目】如圖,已知拋物線 與 軸、 軸分別相交于點A(-1,0)和B(0,3),其頂點為D.
(1)求這條拋物線的解析式;
(2)若拋物線與 軸的另一個交點為E,求△ODE的面積;拋物線的對稱軸上是否存在點P使得△PAB的周長最短.若存在請求出點P的坐標,若不存在說明理由.
【答案】
(1)解:根據(jù)題意得
,解得
∴拋物線解析式為y=-x2+2x+3;
(2)解:當y=0時,-x2+2x+3=0,
解得x1=-1,x2=3,則E(3,0);
y=-(x-1)2+4,則D(1,4),
∴S△ODE= ×3×4=6;
連接BE交直線x=1于點P,如圖,則PA=PE, ∴PA+PB=PE+PB=BE, 此時PA+PB的值最小, 易得直線BE的解析式為 y=-x+3., 當x=1時,y=-x+3=3, ∴P(1,2).
【解析】(1)利用待定系數(shù)法將點A、B的坐標代入函數(shù)解析式,建立方程組,求解即可求出結果。
(2)先由y=0,解方程求出拋物線與x軸的交點E的坐標,,再求出拋物線的頂點坐標,利用三角形的面積公式求出△ODE的面積;連接BE交直線x=1于點P,利用兩點之間線段最短,然后求出直線BE的解析式,易求出點P的坐標。
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,將一張矩形紙片ABCD沿著對角線BD向上折疊,頂點C落到點E處,BE交AD于點F.
(1)求證:△BDF是等腰三角形;
(2)如圖2,過點D作DG∥BE,交BC于點G,連接FG交BD于點O.
①判斷四邊形BFDG的形狀,并說明理由;
②若AB=6,AD=8,求FG的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】重慶實驗外國語學校是一所外語小班制教學的特色學校,初二年級某英語小班共有名同學,學號依次為號,號,……20號,現(xiàn)隨機分成甲、乙、丙三個小組,每組人數(shù)若干.若將乙組的小東(號)調整到甲組,將丙組的小英(號)調整到乙組,此時甲、丙兩組同學學號的平均數(shù)都將比調整前增加,乙組同學學號的平均數(shù)將比調整前增加;同時乙組的小強(號)經(jīng)過計算發(fā)現(xiàn),他的學號數(shù)高于調整前乙組同學學號的平均數(shù),卻低于調整后乙組的平均數(shù)則調整前甲組共有_____名同學.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,拋物線y=ax2+bx+c與x軸交于點A(﹣1,0),頂點坐標為(1,n),與y軸的交點在(0,2)、(0,3)之間(包含端點).有下列結論: ①當x=3時,y=0;
②3a+b>0;
③﹣1≤a≤﹣ ;
④ ≤n≤4.
其中正確的有( )
A.1個
B.2個
C.3個
D.4個
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】體考在即,初三(1)班的課題研究小組對本年級530名學生的體育達標情況進行調查,制作出如圖所示的統(tǒng)計圖,其中1班有50人.(注:30分以上為達標,滿分50分)根據(jù)統(tǒng)計圖,解答下面問題:
(1)初三(1)班學生體育達標率和本年級其余各班學生體育達標率各是多少?
(2)若除初三(1)班外其余班級學生體育考試成績在30﹣﹣40分的有120人,請補全扇形統(tǒng)計圖;(注:請在圖中分數(shù)段所對應的圓心角的度數(shù))
(3)如果要求全年級學生的體育達標率不低于90%,試問在本次調查中,該年級全體學生的體育達標率是否符合要求?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,在中,是角平分線,是上的點, 相交于點.
(1) 如圖2,若=90°,求證: ;
(2) 如圖1,若=( 0°< <180°).
①求的值(用含的代數(shù)式表示);
②是否存在,使小于,如果存在,求出的范圍,如果不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,∠A=m°,∠ABC和∠ACD的平分線相交于點A1,得∠A1;∠A1BC和∠A1CD的平分線相交于點A2,得∠A2;…;∠A2018BC和∠A2018CD的平分線交于點A2019,則∠A2019=________度.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com