【題目】如圖,點(diǎn)D是線段BC的中點(diǎn),分別以點(diǎn)B,C為圓心,BC長(zhǎng)為半徑畫弧,兩弧相交于點(diǎn)A,連接AB,AC,AD,點(diǎn)E為AD上一點(diǎn),連接BE,CE.
(1)求證:BE=CE;
(2)以點(diǎn)E為圓心,ED長(zhǎng)為半徑畫弧,分別交BE,CE于點(diǎn)F,G.若BC=4,EB平分∠ABC,求圖中陰影部分(扇形)的面積.
【答案】(1)證明見(jiàn)解析(2)π
【解析】
試題分析:(1)由點(diǎn)D是線段BC的中點(diǎn)得到BD=CD,再由AB=AC=BC可判斷△ABC為等邊三角形,于是得到AD為BC的垂直平分線,根據(jù)線段垂直平分線的性質(zhì)得BE=CE;
(2)由EB=EC,根據(jù)等腰三角形的性質(zhì)得∠EBC=∠ECB=30°,則根據(jù)三角形內(nèi)角和定理計(jì)算得∠BEC=120°,在Rt△BDE中,BD=BC=2,∠EBD=30°,根據(jù)含30°的直角三角形三邊的關(guān)系得到ED=BD=,然后根據(jù)扇形的面積公式求解.
(1)證明:∵點(diǎn)D是線段BC的中點(diǎn),
∴BD=CD,
∵AB=AC=BC,
∴△ABC為等邊三角形,
∴AD為BC的垂直平分線,
∴BE=CE;
(2)解:∵EB=EC,
∴∠EBC=∠ECB=30°,
∴∠BEC=120°,
在Rt△BDE中,BD=BC=2,∠EBD=30°,
∴ED=BD=,∠FEG=120°,
∴陰影部分(扇形)的面積==π.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知Rt△ABC中,∠ABC=90°,先把△ABC繞點(diǎn)B順時(shí)針旋轉(zhuǎn)90°至△DBE后,再把△ABC沿射線平移至△FEG,DE、FG相交于點(diǎn)H.
(1)判斷線段DE、FG的位置關(guān)系,并說(shuō)明理由;
(2)連結(jié)CG,求證:四邊形CBEG是正方形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,拋物線y=﹣x2+2x+3與x軸交于A,B,與y軸交于C,拋物線的頂點(diǎn)為D,直線l過(guò)C交x軸于E(4,0).
(1)寫出D的坐標(biāo)和直線l的解析式;
(2)P(x,y)是線段BD上的動(dòng)點(diǎn)(不與B,D重合),PF⊥x軸于F,設(shè)四邊形OFPC的面積為S,求S與x之間的函數(shù)關(guān)系式,并求S的最大值;
(3)點(diǎn)Q在x軸的正半軸上運(yùn)動(dòng),過(guò)Q作y軸的平行線,交直線l于M,交拋物線于N,連接CN,將△CMN沿CN翻轉(zhuǎn),M的對(duì)應(yīng)點(diǎn)為M′.在圖2中探究:是否存在點(diǎn)Q,使得M′恰好落在y軸上?若存在,請(qǐng)求出Q的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】若代數(shù)式2x2+3x+7的值為8,則代數(shù)式4x2+6x-9的值是( )
A. 13 B. 2 C. 17 D. -7
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列等式從左到右的變形是因式分解的是( )
A. x(x﹣2)=x2﹣2xB. x2+2xy+1=x(x+2y)+1
C. 15a2b=3a25bD. a2b2﹣1=(ab+1)(ab﹣1)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】平面上有任意三點(diǎn),過(guò)其中兩點(diǎn)能畫直線條數(shù)( )
A. 1 B. 3 C. 1或3 D. 無(wú)數(shù)條
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,O為原點(diǎn),線段AB的兩個(gè)端點(diǎn)A(0,2),B(1,0)分別在y軸和x軸的正半軸上,點(diǎn)C為線段AB的中點(diǎn),現(xiàn)將線段BA繞點(diǎn)B按順時(shí)針?lè)较蛐D(zhuǎn)90°得到線段BD,連結(jié)CD,某拋物線y=ax2+bx+c(a≠0)經(jīng)過(guò)點(diǎn)D、點(diǎn)E(1,1).
(1)若該拋物線過(guò)原點(diǎn)O,則a= ;
(2)若點(diǎn)Q在拋物線上,且滿足∠QOB與∠BCD互余,要使得符合條件的Q點(diǎn)的個(gè)數(shù)是4個(gè),則a的取值范圍是 .
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com