【題目】如圖,在△ABC中,∠ACB=90°,分別以點A和點B為圓心,以相同的長(大于AB)為半徑作弧,兩弧相交于點M和點N,作直線MN交AB于點D,交BC于點E.若AC=3,AB=5,則DE等于( )
A. 2 B. C. D.
【答案】C
【解析】根據(jù)勾股定理求出BC,根據(jù)線段垂直平分線性質(zhì)求出AE=BE,根據(jù)勾股定理求出AE,再根據(jù)勾股定理求出DE即可.
解:在RtABC中,由勾股定理得:BC==4,
連接AE,
從作法可知:DE是AB的垂直評分線,
根據(jù)性質(zhì)AE=BE,
在Rt△ACE中,由勾股定理得:AC+CE=AE,
即3+(4-AE)=AE,
解得:AE=,
在Rt△ADE中,AD=AB=,由勾股定理得:DE+()=(),
解得:DE=.
故選C.
“點睛”:本題考查了線段垂直平分線性質(zhì),勾股定理的應用,能靈活運用勾股定理得出方程是解此題的關(guān)鍵.
科目:初中數(shù)學 來源: 題型:
【題目】已知光的速度為300 000 000米/秒,太陽光到達地球的時間大約是500秒,試計算太陽與地球的距離大約是千米.(結(jié)果用科學記數(shù)法表示)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知邊長為m的正方形面積為12,則下列關(guān)于m的說法中,錯誤的是( )
①m是無理數(shù);②m是方程m2 -12=0的解;③m滿足不等式組,④m是12的算術(shù)平方根.
A. ①② B. ①③ C. ③ D. ①②④
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】乘法公式的探究及應用.
(1)如圖1,可以求出陰影部分的面積是 (寫成兩數(shù)平方差的形式);
(2)如圖2,若將陰影部分裁剪下來,重新拼成一個矩形,它的寬是 ,長是 面積是 (寫成多項式乘法的形式);
(3)比較圖1、圖2陰影部分的面積,可以得到公式 ;
(4)運用你所得到的公式,計算下列各題:
①10.2×9.8,②(2m+n﹣p)(2m﹣n+p).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com