【題目】列方程或方程組解應(yīng)用題:

美化城市,改善人民居住環(huán)境是城市建設(shè)的一項(xiàng)重要內(nèi)容.某市近年來,通過植草、栽樹、修建公園等措施,使城區(qū)綠地面積不斷增加,2011年底該市城區(qū)綠地總面積約為75公頃,截止到2013年底,該市城區(qū)綠地總面積約為108公頃,求從2011年底至2013年底該市城區(qū)綠地總面積的年平均增長率.

【答案】20%

【解析】

設(shè)年平均增長率是x,根據(jù)增長率問題等量關(guān)系:增長前的量×=增長后的量,建立方程求解即可.

解:設(shè)從2011年底至2013年底該市城區(qū)綠地總面積的年平均增長率是x,由題意得

解得:x10.220%,x2=﹣2.2(舍去).

答:從2011年底至2013年底該市城區(qū)綠地總面積的年平均增長率是20%

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為弘揚(yáng)傳統(tǒng)文化,某校開展了傳承經(jīng)典文化,閱讀經(jīng)典名著活動(dòng).為了解七、八年級學(xué)生(七、八年級各有600名學(xué)生)的閱讀效果,該校舉行了經(jīng)典文化知識競賽.現(xiàn)從兩個(gè)年級各隨機(jī)抽取20名學(xué)生的競賽成績(百分制)進(jìn)行分析,過程如下:

收集數(shù)據(jù):

七年級:79,85,7380,75,76,87,7075,94,75,7981,71,7580,8659,8377

八年級:92,74,8782,72,8194,83,77,83,80,81,71,81,72,7782,8070,41

整理數(shù)據(jù):

七年級

0

1

0

a

7

1

八年級

1

0

0

7

b

2

分析數(shù)據(jù):

平均數(shù)

眾數(shù)

中位數(shù)

七年級

78

75

八年級

78

80.5

應(yīng)用數(shù)據(jù):

(1)由上表填空:a= ,b= ,c= d=

(2)估計(jì)該校七、八兩個(gè)年級學(xué)生在本次競賽中成績在90分以上的共有多少人?

(3)你認(rèn)為哪個(gè)年級的學(xué)生對經(jīng)典文化知識掌握的總體水平較好,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABC內(nèi)接于⊙O,AB是⊙O的直徑,CE平分∠ACB交⊙OE,交AB于點(diǎn)D,連接AE,∠E30°,AC5

1)求CE的長;

2)求SADCSACE的比值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,在平面直角坐標(biāo)系xOy中,雙曲線與直線yax+ba≠0)交于A、B兩點(diǎn),直線AB分別交x軸、y軸于C、D兩點(diǎn),Ex軸上一點(diǎn).已知OAOCOE,A點(diǎn)坐標(biāo)為(3,4).

1)將線段OE沿x軸平移得線段O′E′(如圖1),在移動(dòng)過程中,是否存在某個(gè)位置使|BO′AE′|的值最大?若存在,求出|BO′AE′|的最大值及此時(shí)點(diǎn)O′的坐標(biāo);若不存在,請說明理由;

2)將直線OA沿射線OE平移,平移過程中交的圖象于點(diǎn)MM不與A重合),交x軸于點(diǎn)N(如圖3).在平移過程中,是否存在某個(gè)位置使MNE為以MN為腰的等腰三角形?若存在,求出M的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】RtABC中,我們規(guī)定:一個(gè)銳角的對邊與斜邊的比值稱為這個(gè)銳角的正弦值.

例如:RtABC中,∠C90°,∠A的對邊BC與斜邊AB的比值,即就是∠A的正弦值.利用量角器可以制作銳角正弦值速查卡.制作方法如下:

如圖,設(shè)OA1,以O為圓心,分別以0.05,0.10.15,0.2,0.9,0.95長為半徑作半圓,再以OA為直徑作⊙M.利用銳角正弦值速查卡可以讀出相應(yīng)銳角正弦的近似值.例如:60°的正弦值約在0.850.88之間取值,45°的正弦值約在0.700.72之間取值.下列角度中正弦值最接近0.94的是( 。

A.30°B.50°C.40°D.70°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖RtABC中,∠ABC90°,AB6cm,BC8cm,動(dòng)點(diǎn)P從點(diǎn)A出發(fā)沿AB邊以1cm/秒的速度向點(diǎn)B勻速移動(dòng),同時(shí),點(diǎn)Q從點(diǎn)B出發(fā)沿BC邊以2cm/秒的速度向點(diǎn)C勻速移動(dòng),當(dāng)P、Q兩點(diǎn)中有一個(gè)點(diǎn)到達(dá)終點(diǎn)時(shí)另一個(gè)點(diǎn)也停止運(yùn)動(dòng).運(yùn)動(dòng)( 。┟牒螅PBQ面積為5cm2

A.0.5B.1C.5D.15

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在菱形中,,點(diǎn)是射線上一動(dòng)點(diǎn),以為邊向右側(cè)作等邊,點(diǎn)的位置隨點(diǎn)的位置變化而變化.

(1)如圖1,當(dāng)點(diǎn)在菱形內(nèi)部或邊上時(shí),連接的數(shù)量關(guān)系是 的位置關(guān)系是 ;

(2)當(dāng)點(diǎn)在菱形外部時(shí),(1)中的結(jié)論是否還成立?若成立,請予以證明;若不成立,

請說明理由(選擇圖2,圖3中的一種情況予以證明或說理).

(3) 如圖4,當(dāng)點(diǎn)在線段的延長線上時(shí),連接,若 , ,求四邊形的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線yax2+x+cx軸于A,B兩點(diǎn),交y軸于點(diǎn)C.直線y=﹣+2經(jīng)過點(diǎn)A,C

1)求拋物線的解析式;

2)點(diǎn)P在拋物線在第一象限內(nèi)的圖象上,過點(diǎn)Px軸的垂線,垂足為D,交直線AC于點(diǎn)E,連接PC,設(shè)點(diǎn)P的橫坐標(biāo)為m

①當(dāng)PCE是等腰三角形時(shí),求m的值;

②過點(diǎn)C作直線PD的垂線,垂足為F.點(diǎn)F關(guān)于直線PC的對稱點(diǎn)為F′,當(dāng)點(diǎn)F′落在坐標(biāo)軸上時(shí),請直接寫出點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】拋物線y=x2+(2t﹣2)x+t2﹣2t﹣3與x軸交于A、B兩點(diǎn)(A在B左側(cè)),與y軸交于點(diǎn)C.

(1)如圖1,當(dāng)t=0時(shí),連接AC、BC,求ABC的面積;

(2)如圖2,在(1)的條件下,若點(diǎn)P為在第四象限的拋物線上的一點(diǎn),且∠PCB+∠CAB=135°,求P點(diǎn)坐標(biāo);

(3)如圖3,當(dāng)﹣1<t<3時(shí),若Q是拋物線上A、C之間的一點(diǎn)(不與A、C重合),直線QA、QB分別交y軸于D、E兩點(diǎn).在Q點(diǎn)運(yùn)動(dòng)過程中,是否存在固定的t值,使得CE=2CD.若存在,求出t值;若不存在,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案