【題目】在菱形中,,點(diǎn)是射線上一動(dòng)點(diǎn),以為邊向右側(cè)作等邊,點(diǎn)的位置隨點(diǎn)的位置變化而變化.

(1)如圖1,當(dāng)點(diǎn)在菱形內(nèi)部或邊上時(shí),連接,的數(shù)量關(guān)系是 ,的位置關(guān)系是 ;

(2)當(dāng)點(diǎn)在菱形外部時(shí),(1)中的結(jié)論是否還成立?若成立,請(qǐng)予以證明;若不成立,

請(qǐng)說明理由(選擇圖2,圖3中的一種情況予以證明或說理).

(3) 如圖4,當(dāng)點(diǎn)在線段的延長(zhǎng)線上時(shí),連接,若 , ,求四邊形的面積.

【答案】(1)BP=CE; CE⊥AD;(2)成立,理由見解析;(3) .

【解析】(1)①連接AC,證明△ABP≌△ACE,根據(jù)全等三角形的對(duì)應(yīng)邊相等即可證得BP=CE;②根據(jù)菱形對(duì)角線平分對(duì)角可得,再根據(jù)△ABP≌△ACE,可得,繼而可推導(dǎo)得出 ,即可證得CEAD;

(2)(1)中的結(jié)論:BP=CE,CEAD 仍然成立,利用(1)的方法進(jìn)行證明即可;

(3)連接ACBD于點(diǎn)O,CE,作EHAPH,由已知先求得BD=6,再利用勾股定理求出CE的長(zhǎng),AP長(zhǎng),由△APE是等邊三角形,求得, 的長(zhǎng),再根據(jù),進(jìn)行計(jì)算即可得.

(1)BP=CE,理由如下:

連接AC,

∵菱形ABCD,ABC=60°,

∴△ABC是等邊三角形,

AB=AC,BAC=60°,

∵△APE是等邊三角形,

AP=AE ,PAE=60° ,

∴∠BAP=CAE,

∴△ABP≌△ACE,BP=CE;

CEAD ,

∵菱形對(duì)角線平分對(duì)角,

,

∵△ABP≌△ACE,

,

,

,

,

CFAD ,CEAD;

(2)(1)中的結(jié)論:BP=CE,CEAD 仍然成立,理由如下:

連接AC,

∵菱形ABCD,ABC=60°,

∴△ABC和△ACD都是等邊三角形,

AB=AC,BAD=120° ,

BAP=120°+DAP,

∵△APE是等邊三角形,

AP=AE , PAE=60° ,

∴∠CAE=60°+60°+DAP=120°+DAP,

∴∠BAP=CAE,

∴△ABP≌△ACE,BP=CE,,

∴∠DCE=30° ,∵∠ADC=60°,

∴∠DCE+ADC=90° , ∴∠CHD=90° ,CEAD,

(1)中的結(jié)論:BP=CE,CEAD 仍然成立;

(3) 連接ACBD于點(diǎn)O,CE,EHAPH,

∵四邊形ABCD是菱形,

ACBD,BD平分∠ABC ,

∵∠ABC=60°,,

∴∠ABO=30° , , BO=DO=3,

BD=6,

(2)CEAD,

ADBC,CEBC,

, ,

(2)BP=CE=8,DP=2,OP=5,

∵△APE是等邊三角形,,

,

=

=

=,

∴四邊形ADPE的面積是 .

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為發(fā)展校園足球運(yùn)動(dòng),我市城區(qū)四校決定聯(lián)合購(gòu)買一批足球運(yùn)動(dòng)裝備.市場(chǎng)調(diào)查發(fā)現(xiàn):甲、乙兩商場(chǎng)以同樣的價(jià)格出售同種品牌的足球隊(duì)服和足球,已知每套隊(duì)服比每個(gè)足球多50元,兩套隊(duì)服與三個(gè)足球的費(fèi)用相等,經(jīng)洽談,甲商場(chǎng)優(yōu)惠方案是:每購(gòu)買十套隊(duì)服,送一個(gè)足球;乙商場(chǎng)優(yōu)惠方案是:若購(gòu)買隊(duì)服超過80套,則購(gòu)買足球打七折.

1)求每套隊(duì)服和每個(gè)足球的價(jià)格分別是多少元?

2)若城區(qū)四校聯(lián)合購(gòu)買100套隊(duì)服和aa10)個(gè)足球,請(qǐng)用含a的代數(shù)式分別表示出到甲商場(chǎng)和乙商場(chǎng)購(gòu)買裝備所花費(fèi)用;

3)在(2)的條件下,當(dāng)a65時(shí),你認(rèn)為到甲、乙哪家商場(chǎng)購(gòu)買比較合算?說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,每一幅圖中都有若干個(gè)大小不同的四邊形,第1幅圖中有1個(gè)四邊形,第2幅圖中有3個(gè)四邊形,第3幅圖中有5個(gè)四邊形…

1)第4幅圖中有 個(gè)四邊形,第5幅圖中有 個(gè)四邊形;

2)根據(jù)第1幅圖到第5幅圖的規(guī)律,推測(cè)第幅圖中有 個(gè)四邊形;(用含字母的代數(shù)式表示)

3)如果第幅圖中有4039個(gè)四邊形,請(qǐng)你計(jì)算的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】概念學(xué)習(xí)

規(guī)定:如果一個(gè)三角形的三個(gè)角分別等于另一個(gè)三角形的三個(gè)角,那么稱這兩個(gè)三角形互為“等角三角形”.

從三角形不是等腰三角形一個(gè)頂點(diǎn)引出一條射線與對(duì)邊相交,頂點(diǎn)與交點(diǎn)之間的線段把這個(gè)三角形分割成兩個(gè)小三角形,如果分得的兩個(gè)小三角形中一個(gè)為等腰三角形,另一個(gè)與原來三角形是“等角三角形”,我們把這條線段叫做這個(gè)三角形的“等角分割線”.

理解概念

如圖1,在中,,,請(qǐng)寫出圖中兩對(duì)“等角三角形”概念應(yīng)用

如圖2,在中,CD為角平分線,,

求證:CD的等角分割線.

中,CD的等角分割線,直接寫出的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知正方形ABCD邊長(zhǎng)為1,,則有下列結(jié)論:①;②點(diǎn)CEF的距離是2-1;③的周長(zhǎng)為2;④,其中正確的結(jié)論有(

A.4個(gè)B.3個(gè)C.2個(gè)D.1個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】ABC中,若OBC邊的中點(diǎn),則必有:AB2+AC2=2AO2+2BO2成立.依據(jù)以上結(jié)論,解決如下問題:如圖,在矩形DEFG中,已知DE=4,EF=3,點(diǎn)P在以DE為直徑的半圓上運(yùn)動(dòng),則PF2+PG2的最小值為(  )

A. B. C. 34 D. 10

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在中,,,的平分線,且交,如果,則的長(zhǎng)為(

A.2B.4C.6D.8

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小明家16月份的用水量統(tǒng)計(jì)如圖所示,關(guān)于這組數(shù)據(jù),下列說法錯(cuò)誤的是 ).

A、眾數(shù)是6 B、平均數(shù)是5 C、中位數(shù)是5 D、方差是

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖①,四邊形ABCD為正方形,點(diǎn)EF分別在ABBC上,且∠EDF=45°,易證:AE+CF=EF(不用證明).

1)如圖②,在四邊形ABCD中,∠ADC=120°DA=DC,∠DAB=BCD=90°,點(diǎn)E,F分別在ABBC上,且∠EDF=60°.猜想AE,CFEF之間的數(shù)量關(guān)系,并證明你的猜想;

2)如圖③,在四邊形ABCD中,∠ADC=2αDA=DC,∠DAB與∠BCD互補(bǔ),點(diǎn)E,F分別在ABBC上,且∠EDF=α,請(qǐng)直接寫出AE,CFEF之間的數(shù)量關(guān)系,不用證明.

查看答案和解析>>

同步練習(xí)冊(cè)答案