【題目】如圖,AB為半圓O的直徑,點C在半圓O上,AB=8,∠CAB=60°,P是弧上的一個點,連接AP,過點C作CD⊥AP于點D,連接BD,在點P移動過程中,BD長的最小值為_____.
【答案】2﹣2
【解析】
以AC為直徑作圓O′,連接BO′、BC.在點P移動的過程中,點D在以AC為直徑的圓上運動,當O′、D、B共線時,BD的值最小,最小值為O′B﹣O′D,利用勾股定理求出BO′即可解決問題.
解:如圖,以AC為直徑作圓O′,連接BO′、BC,O'D,
∵CD⊥AP,
∴∠ADC=90°,
∴在點P移動的過程中,點D在以AC為直徑的圓上運動,
∵AB是直徑,
∴∠ACB=90°,
在Rt△ABC中,∵AB=8,∠CAB=60°,
∴BC=ABsin60°=,AC=ABcos60°=4,
∴AO'=CO'=2,
∴BO'=
∵O′D+BD≥O′B,
∴當O′、D、B共線時,BD的值最小,最小值為O′B﹣O′D=
故答案為
科目:初中數(shù)學 來源: 題型:
【題目】拋物線y=ax2+bx+c的圖象如圖所示,那么一次函數(shù)y=bx+b2﹣4ac與反比例函數(shù)y=在同一坐標系內的圖象大致是( 。
A.B.
C.D.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】甲、乙兩個工程隊分別同時開挖兩段河渠,所挖河渠的長度y(m)與挖掘時間x(h)之間的關系如圖所示.根據(jù)圖象所提供的信息有:①甲隊挖掘30m時,用了3h;②挖掘6h時甲隊比乙隊多挖了10m;③乙隊的挖掘速度總是小于甲隊;④開挖后甲、乙兩隊所挖河渠長度相等時,x=4.其中一定正確的有( 。
A. 1個 B. 2個 C. 3個 D. 4個
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖①,將直尺擺放在三角板上,使直尺與三角板的邊分別交于點D、E、F、G,∠CGD=42°,將直尺向下平移,使直尺的邊緣通過點B,交AC于點H,如圖②所示.
(1)∠CBH的大小為 度.
(2)點H、B的讀數(shù)分別為4、13.4,求BC的長.(結果精確到0.01)
(參考數(shù)據(jù):sin42°=0.67,cos42°=0.74,tan42°=0.90)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】閱讀理解 在研究函數(shù)的圖象性質時,我們用“描點”的方法畫出函數(shù)的圖象.
列出表示幾組與的對應值:
描點連線:以表中各對對應值為坐標,描出各點,并用平滑的曲線順次連接這些點,就得到函數(shù)的圖象,如圖1:
圖1
可以看出,這個函數(shù)圖象的兩個分支分別在第一、二象限,且當時,與函數(shù)在第一象限的圖象相同;當時,與函數(shù)在第二象限的圖象相同.類似地,我們把函數(shù)(是常數(shù),)的圖象稱為“并進雙曲線”.
認真觀察圖表,分別寫出“并進雙曲線”的對稱性、函數(shù)的增減性性質:
①圖象的對稱性性質: ;
②函數(shù)的增減性性質: ;
延伸探究如圖2,點M,N分別在“并進雙曲線”的兩個分支上,,判斷與的數(shù)量關系,并說明理由.
圖2
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某公司計劃在某地區(qū)銷售一款5G產品,根據(jù)市場分析,該產品的銷售價格將隨銷售周期的變化而變化.該產品在第x周(x為正整數(shù),且1≤x≤8)個銷售周期的銷售價格為y元,y與x之間滿足如圖所示的一次函數(shù).
(1)求y與x之間的函數(shù)關系;
(2)產品在第x個銷售周期的銷售數(shù)量為p萬臺,p與x之間滿足:.已知在某個銷售周期的銷售收入是16000萬元,求此時該產品的銷售價格是多少元?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖①,一臺燈放置在水平桌面上,底座AB與桌面垂直,底座高AB=5cm,連桿BC=CD=20cm,BC,CD與AB始終在同一平面內.
(1)如圖②,轉動連桿BC,CD,使∠BCD成平角,∠ABC=143°,求連桿端點D離桌面l的高度DE.
(2)將圖②中的連桿CD再繞點C逆時針旋轉16°,如圖③,此時連桿端點D離桌面l的高度減小了 cm.
(參考數(shù)據(jù):sin37°=0.6,cos37°=0.8,tan37°=0.75)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,Rt△ABO的頂點A是反比例函數(shù)y=與一次函數(shù)y=﹣x﹣(k+1)的圖象在第二象限的交點,AB⊥x軸于B,且S△ABO=.
(1)直接寫出這兩個函數(shù)的關系式;
(2)求△AOC的面積;
(3)根據(jù)圖象直接寫出:當x為何值時,反比例函數(shù)的值小于一次函數(shù)的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,二次函數(shù)y=ax2+bx+c(a≠0)的圖象與x軸交于A,B兩點,與y軸交于點C,且OA=OC.則下列結論:①abc<0;②>0;③ac-b+1=0;④OA·OB=-.其中結論正確的是____________
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com