【題目】如圖,AB為半圓O的直徑,點C在半圓O上,AB8,∠CAB60°,P是弧上的一個點,連接AP,過點CCDAP于點D,連接BD,在點P移動過程中,BD長的最小值為_____

【答案】22

【解析】

AC為直徑作圓O,連接BO、BC.在點P移動的過程中,點D在以AC為直徑的圓上運動,當O、D、B共線時,BD的值最小,最小值為OBOD,利用勾股定理求出BO即可解決問題.

解:如圖,以AC為直徑作圓O,連接BO、BCO'D,

CDAP

∴∠ADC90°,

∴在點P移動的過程中,點D在以AC為直徑的圓上運動,

AB是直徑,

∴∠ACB90°,

RtABC中,∵AB8,∠CAB60°,

BCABsin60°,ACABcos60°4,

AO'CO'2,

BO'

OD+BDOB,

∴當OD、B共線時,BD的值最小,最小值為OBOD

故答案為

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】拋物線yax2+bx+c的圖象如圖所示,那么一次函數(shù)ybx+b24ac與反比例函數(shù)y在同一坐標系內的圖象大致是( 。

A.B.

C.D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】甲、乙兩個工程隊分別同時開挖兩段河渠,所挖河渠的長度y(m)與挖掘時間x(h)之間的關系如圖所示.根據(jù)圖象所提供的信息有:①甲隊挖掘30m時,用了3h;②挖掘6h時甲隊比乙隊多挖了10m;③乙隊的挖掘速度總是小于甲隊;④開挖后甲、乙兩隊所挖河渠長度相等時,x=4.其中一定正確的有( 。

A. 1個 B. 2個 C. 3個 D. 4個

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖①,將直尺擺放在三角板上,使直尺與三角板的邊分別交于點D、E、FG,∠CGD42°,將直尺向下平移,使直尺的邊緣通過點B,交AC于點H,如圖②所示.

1)∠CBH的大小為   度.

2)點H、B的讀數(shù)分別為4、13.4,求BC的長.(結果精確到0.01

(參考數(shù)據(jù):sin42°0.67,cos42°0.74tan42°0.90

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】閱讀理解 在研究函數(shù)的圖象性質時,我們用描點的方法畫出函數(shù)的圖象.

列出表示幾組的對應值:

描點連線:以表中各對對應值為坐標,描出各點,并用平滑的曲線順次連接這些點,就得到函數(shù)的圖象,如圖1

1

可以看出,這個函數(shù)圖象的兩個分支分別在第一、二象限,且當時,與函數(shù)在第一象限的圖象相同;當時,與函數(shù)在第二象限的圖象相同.類似地,我們把函數(shù)是常數(shù),)的圖象稱為并進雙曲線”.

認真觀察圖表,分別寫出并進雙曲線的對稱性、函數(shù)的增減性性質:

①圖象的對稱性性質:

②函數(shù)的增減性性質: ;

延伸探究如圖2,點M,N分別在并進雙曲線的兩個分支上,,判斷的數(shù)量關系,并說明理由.

2

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某公司計劃在某地區(qū)銷售一款5G產品,根據(jù)市場分析,該產品的銷售價格將隨銷售周期的變化而變化.該產品在第x周(x為正整數(shù),且1≤x≤8)個銷售周期的銷售價格為y元,yx之間滿足如圖所示的一次函數(shù).

1)求yx之間的函數(shù)關系;

2)產品在第x個銷售周期的銷售數(shù)量為p萬臺,px之間滿足:.已知在某個銷售周期的銷售收入是16000萬元,求此時該產品的銷售價格是多少元?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖①,一臺燈放置在水平桌面上,底座AB與桌面垂直,底座高AB5cm,連桿BCCD20cm,BC,CDAB始終在同一平面內.

1)如圖②,轉動連桿BC,CD,使∠BCD成平角,∠ABC143°,求連桿端點D離桌面l的高度DE

2)將圖②中的連桿CD再繞點C逆時針旋轉16°,如圖③,此時連桿端點D離桌面l的高度減小了   cm

(參考數(shù)據(jù):sin37°0.6cos37°0.8,tan37°0.75

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,RtABO的頂點A是反比例函數(shù)y=與一次函數(shù)y=﹣x﹣(k+1)的圖象在第二象限的交點,ABx軸于B,且SABO=

(1)直接寫出這兩個函數(shù)的關系式;

(2)求△AOC的面積;

(3)根據(jù)圖象直接寫出:當x為何值時,反比例函數(shù)的值小于一次函數(shù)的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,二次函數(shù)y=ax2+bx+c(a≠0)的圖象與x軸交于A,B兩點,與y軸交于點C,且OA=OC.則下列結論:①abc<0;②>0;③ac-b+1=0;④OA·OB=-.其中結論正確的是____________

查看答案和解析>>

同步練習冊答案