下列表格是二次函數(shù)y=ax2+bx+c的自變量x與函數(shù)值y的對應(yīng)值:
x-3-20135
y=ax2+bx+c70-8-9-57
則二次函數(shù)y=ax2+bx+c的對稱軸為______,當(dāng)x=2時(shí),y=______.
由表知:
4a-2b+c=0
-8=c
a+b+c=-9
,
解得,
a=1
b=-2
c=-8

∴該二次函數(shù)的解析式是y=x2-2x-8;
∴對稱軸x=-
-2
2×1
=1,即x=1;
當(dāng)x=2時(shí),y=4-4-8=-8;
故答案是:x=1;-8.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,以扇形OAB的頂點(diǎn)O為原點(diǎn),半徑OB所在的直線為x軸,建立平面直角坐標(biāo)系,點(diǎn)B的坐標(biāo)為(2,0),若拋物線y=
1
2
x2+k與扇形OAB的邊界總有兩個(gè)公共點(diǎn),則實(shí)數(shù)k的取值范圍是______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,排球運(yùn)動(dòng)員站在點(diǎn)O處練習(xí)發(fā)球,將球從點(diǎn)O正上方2米的點(diǎn)A處發(fā)出把球看成點(diǎn),其運(yùn)行的高度y(米)與運(yùn)行的水平距離x(米)滿足關(guān)系式y(tǒng)=a(x﹣6)2+h,已知 球網(wǎng)與點(diǎn)O的水平距離為9米,高度為2.43米,球場的邊界距點(diǎn)O的水平距離為18米.
(1)當(dāng)h=2.6時(shí),求y與x的函數(shù)關(guān)系式.
(2)當(dāng)h=2.6時(shí),球能否越過球網(wǎng)?球會(huì)不會(huì)出界?請說明理由.
(3)若球一定能越過球網(wǎng),又不出邊界.則h的取值范圍是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

在拋物線y=-x2上,當(dāng)y<0時(shí),x的取值范圍應(yīng)為( 。
A.x>0B.x<0C.x≠0D.x≥0

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

福娃們在一起探討研究:函數(shù)y=x2-x+m(m為常數(shù))的圖象如圖,如果x=a時(shí),y<0;那么x=a-1時(shí),函數(shù)值( 。
參考下面福娃們的討論,請你解該題,你選擇的答案是( 。
貝貝:我注意到當(dāng)x=0時(shí),y=m>0.
晶晶:我發(fā)現(xiàn)圖象的對稱軸為x=
1
2

歡歡:我判斷出x1<a<x2
迎迎:我認(rèn)為關(guān)鍵要判斷a-1的符號.
妮妮:m可以取一個(gè)特殊的值.
A.y<0B.0<y<mC.y>mD.y=m

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

圓的面積公式S=πr2中,S和r之間的關(guān)系是( 。
A.正比例函數(shù)關(guān)系B.一次函數(shù)關(guān)系
C.二次函數(shù)關(guān)系D.以上答案均不正確

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

二次函數(shù)y=x2-x+m(m為常數(shù))的圖象如圖所示,當(dāng)x=a時(shí),y<0;那么當(dāng)x=a-1時(shí),函數(shù)值( 。
A.y<0B.0<y<mC.y>mD.y=m

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

拋物線y=-2(x-3)2+5的頂點(diǎn)坐標(biāo)是______,在對稱軸左側(cè),y隨x的增大而______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

已知拋物線y=2x2+bx+c的頂點(diǎn)坐標(biāo)為(2,-3),那么b=______,c=______.

查看答案和解析>>

同步練習(xí)冊答案