【題目】如圖,在矩形中,是上的一點(diǎn),連接,將△進(jìn)行翻折,恰好使點(diǎn)落在的中點(diǎn)處,在上取一點(diǎn),以點(diǎn)為圓心,的長(zhǎng)為半徑作半圓與相切于點(diǎn);若,則圖中陰影部分的面積為 ____ .
【答案】.
【解析】
連接OG,證明△DOG∽△DFC,得出,設(shè)OG=OF=r,進(jìn)而求出圓的半徑,再證明△OFQ為等邊三角形,則可由扇形的面積公式和三角形的面積公式求出答案.
解:連接OG,過O點(diǎn)作OH⊥BC于H點(diǎn),設(shè)圓O與BC交于Q點(diǎn),如下圖所示:
設(shè)圓的半徑為r,
∵CD是圓的切線,
∴OG⊥CD,
∴△DOG∽△DFC,
∴,由翻折前后對(duì)應(yīng)的線段相等可得DF=DA=4,
∵F是BC的中點(diǎn),∴CF=BF=2,代入數(shù)據(jù):
∴,
∴,
∴,
∴,
∴∠ODG=30°,∴∠DFC=60°,
且OF=OQ,∴△OFQ是等邊三角形,
∴∠DOQ=180°-60°=120°,
同理△OGQ也為等邊三角形,
∴OH=,且S扇形OGQ=S扇形OQF
∴
.
故答案為:.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】將一副三角尺按圖1擺放,等腰直角三角尺的直角邊DF恰好垂直平分AB,與AC相交于點(diǎn)G,.
(1)求GC的長(zhǎng);
(2)如圖2,將△DEF繞點(diǎn)D順時(shí)針旋轉(zhuǎn),使直角邊DF經(jīng)過點(diǎn)C,另一直角邊DE與AC相交于點(diǎn)H,分別過H、C作AB的垂線,垂足分別為M、N,通過觀察,猜想MD與ND的數(shù)量關(guān)系,并驗(yàn)證你的猜想.
(3)在(2)的條件下,將△DEF沿DB方向平移得到△D′E′F′,當(dāng)D′E′恰好經(jīng)過(1)中的點(diǎn)G時(shí),請(qǐng)直接寫出DD′的長(zhǎng)度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形中,,,點(diǎn)為邊上的一點(diǎn)(與、不重合)四邊形關(guān)于直線的對(duì)稱圖形為四邊形,延長(zhǎng)交與點(diǎn),記四邊形的面積為.
(1)若,求的值;
(2)設(shè),求關(guān)于的函數(shù)表達(dá)式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,把與軸交點(diǎn)相同的二次函數(shù)圖像稱為“共根拋物線”.如圖,拋物線的頂點(diǎn)為,交軸于點(diǎn)、(點(diǎn)在點(diǎn)左側(cè)),交軸于點(diǎn).拋物線與是“共根拋物線”,其頂點(diǎn)為.
(1)若拋物線經(jīng)過點(diǎn),求對(duì)應(yīng)的函數(shù)表達(dá)式;
(2)當(dāng)的值最大時(shí),求點(diǎn)的坐標(biāo);
(3)設(shè)點(diǎn)是拋物線上的一個(gè)動(dòng)點(diǎn),且位于其對(duì)稱軸的右側(cè).若與相似,求其“共根拋物線”的頂點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了打好疫情期間的復(fù)工復(fù)產(chǎn)攻堅(jiān)戰(zhàn),某公司決定為員工采購一批口罩和消毒液,經(jīng)了解,購買4包口罩和3瓶消毒液共需要185元,購買8包口罩和5瓶消毒液共需要335元,
(1)一包口罩和一瓶消毒液各需要多少元?
(2)實(shí)際購買時(shí)發(fā)現(xiàn)廠家有兩種優(yōu)惠方案:方案一:購買口罩不超過20包時(shí),每包都按九折優(yōu)惠,超過20包時(shí),超過部分每包按七折優(yōu)惠;方案二:口罩和消毒液都按原價(jià)的八折優(yōu)惠,公司購買包口罩,10瓶消毒液.
①求兩種方案下所需的費(fèi)用(單位:元)與(單位:包)的函數(shù)關(guān)系式;
②若該公司決定購買包口罩和10瓶消毒液,請(qǐng)你幫助該公司決定選擇哪種方案更合算.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,⊙是△的外接圓,為直徑,點(diǎn)是⊙外一點(diǎn),且,連接交于點(diǎn),延長(zhǎng)交⊙于點(diǎn).
⑴.證明:=;
⑵.若,證明:是⊙的切線;
⑶.在⑵的條件下,連接交⊙于點(diǎn),連接;若,求的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,平行四邊形ABCD中,AB=5,BC=8,cosB=,點(diǎn)E是BC邊上的動(dòng)點(diǎn),以C為圓心,CE長(zhǎng)為半徑作圓C,交AC于F,連接AE,EF.
(1)求AC的長(zhǎng);
(2)當(dāng)AE與圓C相切時(shí),求弦EF的長(zhǎng);
(3)圓C與線段AD沒有公共點(diǎn)時(shí),確定半徑CE的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小張去文具店購買作業(yè)本,作業(yè)本有大、小兩種規(guī)格,大本作業(yè)本的單價(jià)比小本作業(yè)本貴0.3元,已知用8元購買大本作業(yè)本的數(shù)量與用5元購買小本作業(yè)本的數(shù)量相同.
(1)求大本作業(yè)本與小本作業(yè)本每本各多少元?
(2)因作業(yè)需要,小張要再購買一些作業(yè)本,購買小本作業(yè)本的數(shù)量是大本作業(yè)本數(shù)量的2倍,總費(fèi)用不超過15元.則大本作業(yè)本最多能購買多少本?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在初中階段的函數(shù)學(xué)習(xí)中,我們經(jīng)歷了列表、描點(diǎn)、連線畫函數(shù)圖象,并結(jié)合圖象研究函數(shù)性質(zhì)的過程.以下是我們研究函數(shù)性質(zhì)及其應(yīng)用的部分過程,請(qǐng)按要求完成下列各小題.
(1)請(qǐng)把下表補(bǔ)充完整,并在圖中補(bǔ)全該函數(shù)圖象;
… | -5 | -4 | -3 | -2 | -1 | 0 | 1 | 2 | 3 | 4 | 5 | … | |
… | -3 | 0 | 3 | … |
(2)根據(jù)函數(shù)圖象,判斷下列關(guān)于該函數(shù)性質(zhì)的說法是否正確,正確的在相應(yīng)的括號(hào)內(nèi)打“√”,錯(cuò)誤的在相應(yīng)的括號(hào)內(nèi)打“×”;
①該函數(shù)圖象是軸對(duì)稱圖形,它的對(duì)稱軸為y軸;( )
②該函數(shù)在自變量的取值范圍內(nèi),有最大值和最小值,當(dāng)時(shí),函數(shù)取得最大值3;當(dāng)時(shí),函數(shù)取得最小值-3;( )
③當(dāng)或時(shí),y隨x的增大而減。划(dāng)時(shí),y隨x的增大而增大;( )
(3)已知函數(shù)的圖象如圖所示,結(jié)合你所畫的函數(shù)圖象,直接寫出不等式的解集(保留1位小數(shù),誤差不超過0.2).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com