【題目】使得函數值為0的自變量的值稱為函數的零點.例如,對于函數y=x﹣1,令y=0可得x=1,我們說1是函數y=x﹣1的零點.已知函數y=x2﹣2mx﹣2(m+3)(m為常數)
(1)當m=0時,求該函數的零點.
(2)證明:無論m取何值,該函數總有兩個零點.
【答案】(1)m=0時,該函數的零點為±(2)證明見解析
【解析】試題分析:(1)、求出當y=0時的方程的解,從而得出函數的零點;(2)、利用根的判別式得出判別式為非負數,即當y=0時方程有兩個不相等的實數根,即函數總有兩個零點.
試題解析:(1)、解:當m=0時,令y=0,則x2﹣6=0, 解得x=±,
所以,m=0時,該函數的零點為±;
(2)、證明:令y=0,則x2﹣2mx﹣2(m+3)=0,
△=b2﹣4ac=(﹣2m)2﹣4×1×2(m+3)=4m2+8m+24=4(m+1)2+20,
∵無論m為何值時,4(m+1)2≥0, ∴△=4(m+1)2+20>0,
∴關于x的方程總有不相等的兩個實數根,
即,無論m取何值,該函數總有兩個零點.
科目:初中數學 來源: 題型:
【題目】如圖1,四邊形ABCD中,BD⊥AD,E為BD上一點,AE=BC,CE⊥BD,CE=ED
(1)已知AB=10,AD=6,求CD;
(2)如圖2,F為AD上一點,AF=DE,連接BF,交BF交AE于G,過G作GH⊥AB于H,∠BGH=75°.求證:BF=2GH+EG.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】(1)閱讀下面的材料并把解答過程補充完整.
問題:在關于,的二元一次方程組中,,,求的取值范圍.
在關于,的二元一次方程組中,利用參數的代數式表示,,然后根據,列出關于參數的不等式組即可求得的取值范圍.解:由,解得,又因為,,所以解得____________.
(2)請你按照上述方法,完成下列問題:
①已知,且,,求的取值范圍;
②已知,在關于,的二元一次方程組中,,,請直接寫出的取值范圍(結果用含的式子表示)____________.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】(1)觀察下列各式: ……
你發(fā)現了什么規(guī)律?試用你發(fā)現的規(guī)律填空:
;
(2)請你用含一個字母的等式將上面各式呈現的規(guī)律表示出來,并用所學數學知識說明你所寫式子的正確性.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在△ABC中,AD是BC邊上的中線,E是AD的中點,過點A作BC的平行線交BE的延長線于點F,連接CF.
(1)求證:AF=DC;
(2)若AB⊥AC,試判斷四邊形ADCF的形狀,并證明你的結論.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,Rt△ABC中,∠ACB=90°,∠ABC=60°,BC=2cm,D為BC的中點,若動點E以1cm/s的速度從A點出發(fā),沿著A→B→A的方向運動,設E點的運動時間為t秒(0≤t<6),連接DE,當△BDE是直角三角形時,t的值為( )
A.2B.2.5或3.5
C.3.5或4.5D.2或3.5或4.5
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某校課外興趣小組在本校學生中開展“感動中國2013年度人物”先進事跡知曉情況專題調查活動,采取隨機抽樣的方式進行問卷調查,問卷調查的結果分為A、B、C、D四類.其中,A類表示“非常了解”,B類表示“比較了解”,C類表示“基本了解”,D類表示“不太了解”,劃分類別后的數據整理如下表:
類別 | A | B | C | D |
頻數 | 30 | 40 | 24 | b |
頻率 | a | 0.4 | 0.24 | 0.06 |
(1)表中的a= ,b= ;
(2)根據表中數據,求扇形統計圖中類別為B的學生數所對應的扇形圓心角的度數;
(3)若該校有學生1000名,根據調查結果估計該校學生中類別為C的人數約為多少?
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com