【題目】如圖,已知CD平分∠ACB,∠1=2

1)求證:DEAC;

2)若∠3=30°,∠B=25°,求∠BDE的度數(shù).

【答案】(1)詳見(jiàn)解析;(2)95°

【解析】

1)先根據(jù)角平分線的定義得出∠2=3,再由∠1=2可得出∠1=3,進(jìn)而可得出結(jié)論;
2)根據(jù)∠3=30°可得出∠ACB的度數(shù),再由平行線的性質(zhì)得出∠BED的度數(shù),由三角形內(nèi)角和定理即可得出結(jié)論.

1)證明:∵CD平分∠ACB,

∴∠2=3

∵∠1=2

∴∠1=3,

DEAC;

2)解:∵CD平分∠ACB,∠3=30°

∴∠ACB=23=60°

DEAC,

∴∠BED=ACB=60°

∵∠B=25°,

∴∠BDE=180°-60°-25°=95°

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,一次函數(shù)y=kx+b的圖象與反比例函數(shù)y=的圖象交于點(diǎn)A(﹣3,m+8),B(n,﹣6)兩點(diǎn).

(1)求一次函數(shù)與反比例函數(shù)的解析式;

(2)求AOB的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,在數(shù)軸上點(diǎn)A,點(diǎn)B對(duì)應(yīng)的數(shù)分別是6,﹣6,∠DCE90°(點(diǎn)C與點(diǎn)O重合,點(diǎn)D在數(shù)軸的正半軸上)

1)如圖1,若CF平分∠ACE,則∠AOF   度;點(diǎn)A與點(diǎn)B的距離= 

2)如圖2,將∠DCE沿?cái)?shù)軸的正半軸向右平移t0t3)個(gè)單位后,再繞點(diǎn)頂點(diǎn)C逆時(shí)針旋轉(zhuǎn)30t度,作CF平分∠ACE,此時(shí)記∠DCFα

當(dāng)t1時(shí),α   ;點(diǎn)B與點(diǎn)C的距離= 

猜想BCEα的數(shù)量關(guān)系,并說(shuō)明理由;

3)如圖3,開(kāi)始∠D1C1E1與∠DCE重合,將∠DCE沿?cái)?shù)軸的正半軸向右平移t0t3)個(gè)單位,再繞點(diǎn)頂點(diǎn)C逆時(shí)針旋轉(zhuǎn)30t度,作CF平分∠ACE,此時(shí)記∠DCFα,與此同時(shí),將∠D1C1E1沿?cái)?shù)軸的負(fù)半軸向左平移t0t3)個(gè)單位,再繞點(diǎn)頂點(diǎn)C1順時(shí)針旋轉(zhuǎn)30t度,作C1F1平分∠AC1E1,記∠D1C1F1β,若αβ滿足β|20°,求t的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知:直線l分別交ABCDE、F兩點(diǎn),且ABCD

1 說(shuō)明:∠1=∠2

2 如圖2,點(diǎn)M、NAB、CD之間,且在直線l左側(cè),若EMN+∠FNM=260°,

求:AEM+∠CFN的度數(shù);

如圖3,若EP平分AEMFP平分CFN,求P的度數(shù);

3 如圖4,∠2=80°,點(diǎn)G在射線EB上,點(diǎn)HAB上方的直線l上,點(diǎn)Q是平面內(nèi)一點(diǎn),連接QGQH,若AGQ=18°FHQ=24°,直接寫(xiě)出GQH的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,等腰△ABC底邊BC的長(zhǎng)為4cm,面積為12cm,腰AB的垂直平分線交AB于點(diǎn)E,若點(diǎn)DBC邊的中點(diǎn),M為線段EF上一動(dòng)點(diǎn),則△BDM的周長(zhǎng)最小值為_________

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知拋物線y=﹣x2+2x+3與x軸交于A,B兩點(diǎn)(點(diǎn)A在點(diǎn)B的左邊),與y軸交于點(diǎn)C,連接BC.

(1)求A,B,C三點(diǎn)的坐標(biāo);
(2)若點(diǎn)P為線段BC上一點(diǎn)(不與B,C重合),PM∥y軸,且PM交拋物線于點(diǎn)M,交x軸于點(diǎn)N,當(dāng)△BCM的面積最大時(shí),求△BPN的周長(zhǎng);
(3)在(2)的條件下,當(dāng)△BCM的面積最大時(shí),在拋物線的對(duì)稱軸上存在一點(diǎn)Q,使得△CNQ為直角三角形,求點(diǎn)Q的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】計(jì)算:( ﹣2)0+( 1﹣2cos30°﹣| ﹣2|

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知如圖,以Rt△ABC的AC邊為直徑作⊙O交斜邊AB于點(diǎn)E,連接EO并延長(zhǎng)交BC的延長(zhǎng)線于點(diǎn)D,點(diǎn)F為BC的中點(diǎn),連接EF.

(1)求證:EF是⊙O的切線;
(2)若⊙O的半徑為3,∠EAC=60°,求AD的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在矩形ABCD中,AB8,BC4,將矩形沿AC折疊,點(diǎn)D落在點(diǎn)D′處,則重疊部分△AFC的面積為(

A.6B.8C.10D.12

查看答案和解析>>

同步練習(xí)冊(cè)答案