【題目】如圖1,四邊形ABCD中,BD⊥AD,E為BD上一點(diǎn),AE=BC,CE⊥BD,CE=ED
(1)已知AB=10,AD=6,求CD;
(2)如圖2,F為AD上一點(diǎn),AF=DE,連接BF,交BF交AE于G,過(guò)G作GH⊥AB于H,∠BGH=75°.求證:BF=2GH+EG.
【答案】(1)2;(2)證明見(jiàn)解析
【解析】
(1)由勾股定理得出BD==8,由HL證得Rt△ADE≌Rt△BEC,得出BE=AD,則CE=ED=BD﹣BE=BD﹣AD=2,由等腰直角三角形的性質(zhì)即可得出結(jié)果;
(2)連接CF,易證AF=CE,AD∥CE,得出四邊形AECF是平行四邊形,則AE=CF,AE∥CF,得出∠CFD=∠EAD,∠CFB=∠AGF,由Rt△ADE≌Rt△BEC,得出∠CBE=∠EAD,推出∠CBE=∠CFD,證得△BCF是等腰直角三角形,則BF=BC=CF=AE,∠FBC=∠BFC=45°,推出∠AGF=45°,∠AGH=60°,∠GAH=30°,則AG=2GH,得出BF=AE=(AG+EG),即可得出結(jié)論.
(1)解:∵BD⊥AD,
∴BD===8,
∵CE⊥BD,
∴∠CEB=∠EDA=90°,
在Rt△ADE和Rt△BEC中,,
∴Rt△ADE≌Rt△BEC(HL),
∴BE=AD,
∴CE=ED=BD﹣BE=BD﹣AD=8﹣6=2,
∴CD=CE=2;
(2)解:連接CF,如圖2所示:
∵AF=DE,DE=CE,
∴AF=CE,
∵BD⊥AD,CE⊥BD,
∴AD∥CE,
∴四邊形AECF是平行四邊形,
∴AE=CF,AE∥CF,
∴∠CFD=∠EAD,∠CFB=∠AGF,
由(1)得:Rt△ADE≌Rt△BEC,
∴∠CBE=∠EAD,
∴∠CBE=∠CFD,
∵∠FBD+∠BFC+∠CFD=90°,
∴∠FBD+∠BFC+∠CBE=90°,
∴∠BCF=90°,
∵AE=BC,
∴BC=CF,
∴△BCF是等腰直角三角形,
∴BF=BC=CF=AE,∠FBC=∠BFC=45°,
∴∠AGF=45°,
∵∠BGH=75°,
∴∠AGH=180°﹣45°﹣75°=60°,
∵GH⊥AB,
∴∠GAH=30°,
∴AG=2GH,
∴BF=AE=(AG+EG),
∴BF=2GH+EG.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖A在數(shù)軸上對(duì)應(yīng)的數(shù)為-2.
(1)點(diǎn)B在點(diǎn)A右邊距離A點(diǎn)4個(gè)單位長(zhǎng)度,則點(diǎn)B所對(duì)應(yīng)的數(shù)是_____.
(2)在(1)的條件下,點(diǎn)A以每秒2個(gè)單位長(zhǎng)度沿?cái)?shù)軸向左運(yùn)動(dòng),點(diǎn)B以每秒3個(gè)單位長(zhǎng)度沿?cái)?shù)軸向右運(yùn)動(dòng).現(xiàn)兩點(diǎn)同時(shí)運(yùn)動(dòng),當(dāng)點(diǎn)A運(yùn)動(dòng)到-6的點(diǎn)處時(shí),求A、B兩點(diǎn)間的距離.
(3)在(2)的條件下,現(xiàn)A點(diǎn)靜止不動(dòng),B點(diǎn)以原速沿?cái)?shù)軸向左運(yùn)動(dòng),經(jīng)過(guò)多長(zhǎng)時(shí)間A、B兩點(diǎn)相距4個(gè)單位長(zhǎng)度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知二次函數(shù)y=(a+2)x2+2ax+a﹣1的圖象與x軸有交點(diǎn),且關(guān)于x的分式方程+1=的解為整數(shù),則所有滿(mǎn)足條件的整數(shù)a之和為( )
A.﹣4B.﹣6C.﹣8D.3
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知,甲地到乙地的路程為450千米,一輛大貨車(chē)從甲地前往乙地運(yùn)送物資,行駛1小時(shí)在途中某地出現(xiàn)故障,立即通知技術(shù)人員乘小汽車(chē)從甲地趕來(lái)維修(通知時(shí)間忽略不計(jì)),小汽車(chē)到達(dá)該地后經(jīng)過(guò)半小時(shí)修好大貨年后以原速原路返甲地,小汽車(chē)在返程途中當(dāng)走到一半路程時(shí)發(fā)現(xiàn)有重要物品落在大貨車(chē)上,于是立即掉頭以原速追趕大貨車(chē),追上大貨車(chē)取下物品(取物品時(shí)間忽略不計(jì))后以原速原路返回甲地,大貨車(chē)修好后以原速前往乙地,如圖是兩車(chē)距甲地的路程y(千米)與大貨車(chē)所用時(shí)間x(小時(shí))之間的函數(shù)圖象,則當(dāng)小汽車(chē)第二次追上大貨車(chē)時(shí),大貨車(chē)距離乙地_____千米.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABD中,C為BD上一點(diǎn),使得CA=CD,過(guò)點(diǎn)C作CE∥AD交AB于點(diǎn)E,過(guò)點(diǎn)D作DF⊥AD交AC的處長(zhǎng)線(xiàn)于點(diǎn)F.
(1)若CD=3,求AF的長(zhǎng);
(2)若∠B=30°,∠ADC=40°,求證:AC=EC.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知反比例函數(shù)y=的圖象與一次函數(shù)y=kx+m的圖象相交于點(diǎn)A(2,1).
(1)分別求出這兩個(gè)函數(shù)的解析式;
(2)當(dāng)x取什么范圍時(shí),反比例函數(shù)值大于0;
(3)若一次函數(shù)與反比例函數(shù)另一交點(diǎn)為B,且縱坐標(biāo)為﹣4,當(dāng)x取什么范圍時(shí),反比例函數(shù)值大于一次函數(shù)的值;
(4)試判斷點(diǎn)P(﹣1,5)關(guān)于x軸的對(duì)稱(chēng)點(diǎn)P′是否在一次函數(shù)y=kx+m的圖象上.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】平面直角坐標(biāo)系中,已知點(diǎn)A(2,2),B(4,0).若在坐標(biāo)軸上取點(diǎn)C,使△ABC為等腰三角形,則滿(mǎn)足條件的點(diǎn)C的個(gè)數(shù)是( )
A.3B.4C.5D.6
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在Rt△ABC中,∠C=90°,AB=10,BC=8,AC=6.點(diǎn)I為△ABC三條角平分線(xiàn)的交點(diǎn),則點(diǎn)I到邊AB的距離為__________
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】使得函數(shù)值為0的自變量的值稱(chēng)為函數(shù)的零點(diǎn).例如,對(duì)于函數(shù)y=x﹣1,令y=0可得x=1,我們說(shuō)1是函數(shù)y=x﹣1的零點(diǎn).已知函數(shù)y=x2﹣2mx﹣2(m+3)(m為常數(shù))
(1)當(dāng)m=0時(shí),求該函數(shù)的零點(diǎn).
(2)證明:無(wú)論m取何值,該函數(shù)總有兩個(gè)零點(diǎn).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com