【題目】如圖,直角三角形紙片中,,cmcm,點分別在邊上,點是邊的中點.現(xiàn)將該紙片沿折疊,使點與點重合,則______cm

【答案】

【解析】

過點FFHAB于點H,利用勾股定理可得AB5,根據(jù)點FBC的中點可得BF2,根據(jù)可證△BHF∽△BCA,進而由相似三角形的性質可得,根據(jù)折疊可設AEFEx,最后利用Rt△EFH的勾股定理列出方程求解即可.

解:如圖,過點FFHAB于點H

,,,

∵點FBC的中點,BC4,

BF2

,FHAB,

,

△BHF∽△BCA,

,

解得,

∵折疊,

∴設AEFEx,

EHABAEBH

∵在Rt△EFH中,EH2FH2EF2,

解得:,

故答案為:

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】中,,于點

1)如圖所示,點分別在線段,上,且,當時,求線段的長;

2)如圖所示,點,分別在上,且,求證:

3)如圖所示,點的延長線上,點上,且,請直接寫出,三者的等量關系式.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】長春的冬天經(jīng)常下雪,為了提高清雪的效率,市政府啟用了清雪機,已知一臺清雪機的工作效率相當于一名環(huán)衛(wèi)工人的200倍,若用這臺清雪機清理9000立方米的積雪,要比150名環(huán)衛(wèi)工人清理這些積雪少用2小時,求一臺清雪機每小時清雪多少立方米?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】有一個著名的希波克拉蒂月牙問題:如圖1,以直角三角形的各邊為直徑分別向上作半圓,則直角三角形的面積可表示成兩個月牙形的面積之和,現(xiàn)將三個半圓紙片沿直角三角形的各邊向下翻折得到圖2,把較小的兩張半圓紙片的重疊部分面積記為S1,大半圓紙片未被覆蓋部分的面積記為S2,則直角三角形的面積可表示成( 。

A.S1+S2B.S2S1C.S22S1D.S1S2

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某公司研制了新產(chǎn)品1520kg,為尋求合適的銷售價格,進行了8天試銷,共銷售470kg.統(tǒng)計發(fā)現(xiàn)每天的銷售量y(千克)與銷售價格x(元/千克)之間滿足函數(shù)關系y=﹣x+120

1)在試銷8天后,公司決定將這種產(chǎn)品的銷售價格定為50/千克,并且每天都按這個價格銷售,則余下的產(chǎn)品再用多少天全部售完?

2)在(1)的條件下,公司繼續(xù)銷售9天后,發(fā)現(xiàn)剩余的產(chǎn)品必須在5天內(nèi)全部售完,此時需要重新確定一個銷售價格,使后面都按新的價格銷售,那么新確定的價格最高不超過每千克多少元才能完成銷售任務?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,己知拋物線軸相交于點,其對稱軸與拋物線相交于點,與軸相交于點

1)求的長;

2)平移該拋物線得到一條新拋物線,設新拋物線的頂點為.若新拋物線經(jīng)過原點,且,求新拋物線對應的函數(shù)表達式.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,直線y=-x+2x軸交于點B,與y軸交于點C,已知二次函數(shù)的圖象經(jīng)過點B,C和點A(-1,0)

(1)B,C兩點的坐標.

(2)求該二次函數(shù)的解析式.

(3)若拋物線的對稱軸與x軸的交點為點D,則在拋物線的對稱軸上是否存在點P,使△PCD是以CD為腰的等腰三角形?如果存在,直接寫出點P的坐標;如果不存在,請說明理由.

(4)E是線段BC上的一個動點,過點Ex軸的垂線與拋物線相交于點F,當點E運動到什么位置時,四邊形CDBF的面積最大?求出四邊形CDBF的最大面積及此時點E的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,AB是半圓O的直徑,AD為弦,∠DBC=A

1)求證:BC是半圓O的切線;

2)若OCAD,OCBDE,BD=6CE=4,求AD的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】為培養(yǎng)學生良好學習習慣,某學校計劃舉行一次整理錯題集的展示活動,對該校部分學生整理錯題集的情況進行了一次抽樣調查,根據(jù)收集的數(shù)據(jù)繪制了下面不完整的統(tǒng)計圖表.

整理情況

頻數(shù)

頻率

非常好

0.21

較好

70

0.35

一般

m

不好

36

請根據(jù)圖表中提供的信息,解答下列問題:

(1)本次抽樣共調查了   名學生;

(2)m=   ;

(3)該校有1500名學生,估計該校學生整理錯題集情況非常好較好的學生一共約多少名?

(4)某學習小組4名學生的錯題集中,有2非常好(記為A1、A2),1較好(記為B),1一般(記為C),這些錯題集封面無姓名,而且形狀、大小、顏色等外表特征完全相同,從中抽取一本,不放回,從余下的3本錯題集中再抽取一本,請用列表法畫樹形圖的方法求出兩次抽到的錯題集都是非常好的概率.

查看答案和解析>>

同步練習冊答案