【題目】在平面直角坐標(biāo)系中,已知拋物線L:經(jīng)過點(diǎn)A(-3,0)和點(diǎn)B(0,-6),L關(guān)于原點(diǎn)O對稱的拋物線為.
(1)求拋物線L的表達(dá)式;
(2)點(diǎn)P在拋物線上,且位于第一象限,過點(diǎn)P作PD⊥y軸,垂足為D.若△POD與△AOB相似,求符合條件的點(diǎn)P的坐標(biāo).
【答案】(1) y=-x2-5x-6;(2)符合條件的點(diǎn)P的坐標(biāo)為(1,2)或(6,12)或(,)或(4,2)。
【解析】
(1)利用待定系數(shù)法進(jìn)行求解即可得;
(2)由關(guān)于原點(diǎn)對稱的點(diǎn)的坐標(biāo)特征可知點(diǎn)A(-3,0)、B(0,-6)在L′上的對應(yīng)點(diǎn)分別為A′(3,0)、B′(0,6),利用待定系數(shù)法求得拋物線L′的表達(dá)式為y=x2-5x+6,設(shè)P(m,m2-5m+6)(m>0),根據(jù)PD⊥y軸,可得點(diǎn)D的坐標(biāo)為(0,m2-5m+6),可得PD=m,OD=m2-5m+6,再由Rt△POD與Rt△AOB相似,分Rt△PDO∽Rt△AOB或Rt△ODP∽Rt△AOB兩種情況,根據(jù)相似三角形的性質(zhì)分別進(jìn)行求解即可得.
(1)由題意,得,
解得:,
∴L:y=-x2-5x-6;
(2)∵拋物線L關(guān)于原點(diǎn)O對稱的拋物線為,
∴點(diǎn)A(-3,0)、B(0,-6)在L′上的對應(yīng)點(diǎn)分別為A′(3,0)、B′(0,6),
∴設(shè)拋物線L′的表達(dá)式y=x2+bx+6,
將A′(3,0)代入y=x2+bx+6,得b=-5,
∴拋物線L′的表達(dá)式為y=x2-5x+6,
∵A(-3,0),B(0,-6),
∴AO=3,OB=6,
設(shè)P(m,m2-5m+6)(m>0),
∵PD⊥y軸,
∴點(diǎn)D的坐標(biāo)為(0,m2-5m+6),
∵PD=m,OD=m2-5m+6,
∵Rt△PDO與Rt△AOB相似,
∴有Rt△PDO∽Rt△AOB或Rt△ODP∽Rt△AOB兩種情況,
①當(dāng)Rt△PDO∽Rt△AOB時,則,即,
解得m1=1,m2=6,
∴P1(1,2),P2(6,12);
②當(dāng)Rt△ODP∽Rt△AOB時,則,即,
解得m3=,m4=4,
∴P3(,),P4(4,2),
∵P1、P2、P3、P4均在第一象限,
∴符合條件的點(diǎn)P的坐標(biāo)為(1,2)或(6,12)或(,)或(4,2).
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,矩形OABC的邊OA,OC分別在軸、軸上,點(diǎn)B在第一象限,點(diǎn)D在邊BC上,且∠AOD=30°,四邊形OA′B′D與四邊形OABD關(guān)于直線OD對稱(點(diǎn)A′和A,B′和B分別對應(yīng)),若AB=1,反比例函數(shù)的圖象恰好經(jīng)過點(diǎn) A′,B,則的值為_________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了滿足師生的閱讀需求,某校圖書館的藏書從2016年底到2018年底兩年內(nèi)由5萬冊增加到7.2萬冊.
(1)求這兩年藏書的年均增長率;
(2)經(jīng)統(tǒng)計(jì)知:中外古典名著的冊數(shù)在2016年底僅占當(dāng)時藏書總量的5.6%,在這兩年新增加的圖書中,中外古典名著所占的百分率恰好等于這兩年藏書的年均增長率,那么到2018年底中外古典名著的冊數(shù)占藏書總量的百分之幾?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在某一路段,規(guī)定汽車限速行駛,交通警察在此限速路段的道路上設(shè)置了監(jiān)測區(qū),其中點(diǎn)C、D為監(jiān)測點(diǎn),已知點(diǎn)C、D、B在同一直線上,且AC⊥BC,CD=400米,tan∠ADC=2,∠ABC=35°
(1)求道路AB段的長(結(jié)果精確到1米)
(2)如果道路AB的限速為60千米/時,一輛汽車通過AB段的時間為90秒,請你判斷該車是否是超速,并說明理由;參考數(shù)據(jù):sin35°≈0.5736,cos35°≈0.8192,tan35°≈0.7002
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】甲、乙兩名隊(duì)員參加射擊訓(xùn)練,成績分別被制成下列兩個統(tǒng)計(jì)圖:
根據(jù)以上信息,整理分析數(shù)據(jù)如下:
平均成績/環(huán) | 中位數(shù)/環(huán) | 眾數(shù)/環(huán) | 方差 | |
甲 | a | 7 | 7 | 1.2 |
乙 | 7 | b | 8 | c |
(1)寫出表格中a,b,c的值:a= ,b= ,c= .
(2)如果乙再射擊一次,命中7環(huán),那么乙的射擊成績的方差 .(填“變大”“變小”“不變”)
(3)教練根據(jù)這10次成績?nèi)暨x擇甲參加比賽,教練的理由是什么?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某服裝店因?yàn)閾Q季更新,采購了一批新服裝,有A、B兩種款式共100件,花費(fèi)了6600元,已知A種款式單價是80元/件,B種款式的單價是40元/件
(1)求兩種款式的服裝各采購了多少件?
(2)如果另一個服裝店也想要采購這兩種款式的服裝共60件,且采購服裝的費(fèi)用不超過3300元,那么A種款式的服裝最多能采購多少件?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為迎接2020年中考,某中學(xué)對全校九年級學(xué)生進(jìn)行了一次數(shù)學(xué)期末模擬考試,并隨機(jī)抽取了部分學(xué)生的測試成績作為樣本進(jìn)行分析,繪制成了如下兩幅不完整的統(tǒng)計(jì)圖,請你根據(jù)統(tǒng)計(jì)圖中提供的信息解答下列問題:
(1)在這次調(diào)查中,一共調(diào)查了多少名學(xué)生;
(2)將條形統(tǒng)計(jì)圖補(bǔ)充完整;
(3)若該中學(xué)九年級共有860人參加了這次數(shù)學(xué)考試,估計(jì)該校九年級共有多少名學(xué)生的數(shù)學(xué)成績可以達(dá)到優(yōu)秀?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,已知點(diǎn)的橫坐標(biāo)為2,將點(diǎn)向右平移2個單位,再向下平移2個單位得到點(diǎn),且、兩點(diǎn)均在雙曲線上.
(1)求反比例函數(shù)的解析式.(2)若直線于反比例函數(shù)的另一交點(diǎn)為,求的面積.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com