【題目】如圖,已知中,,點以每秒1個單位的速度從向運動,同時點以每秒2個單位的速度從向方向運動,到達點后,點也停止運動,設(shè)點運動的時間為秒.
(1)求點停止運動時,的長;
(2) 兩點在運動過程中,點是點關(guān)于直線的對稱點,是否存在時間,使四邊形為菱形?若存在,求出此時的值;若不存在,請說明理由.
(3) 兩點在運動過程中,求使與相似的時間的值.
【答案】(1)(2)(3)或
【解析】
(1)求出點Q的從B到A的運動時間,再求出AP的長,利用勾股定理即可解決問題.
(2)如圖1中,當四邊形PQCE是菱形時,連接QE交AC于K,作QD⊥BC于D.根據(jù)DQ=CK,構(gòu)建方程即可解決問題.
(3)分兩種情形:如圖3-1中,當∠APQ=90°時,如圖3-2中,當∠AQP=90°時,分別構(gòu)建方程即可解決問題.
(1)在Rt△ABC中,∵∠C=90°,AC=6,BC=8,
∴AB==10,
點Q運動到點A時,t==5,
∴AP=5,PC=1,
在Rt△PBC中,PB=.
(2)如圖1中,當四邊形PQCE是菱形時,連接QE交AC于K,作QD⊥BC于D.
∵四邊形PQCE是菱形,
∴PC⊥EQ,PK=KC,
∵∠QKC=∠QDC=∠DCK=90°,
∴四邊形QDCK是矩形,
∴DQ=CK,
∴,
解得t=.
∴t=s時,四邊形PQCE是菱形.
(3)如圖2中,當∠APQ=90°時,
∵∠APQ=∠C=90°,
∴PQ∥BC,
∴,
∴,
∴.
如圖3中,當∠AQP=90°時,
∵△AQP∽△ACB,
∴,
∴,
∴,
綜上所述,或s時,△APQ是直角三角形.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt∠AOB的平分線ON上依次取點C,F(xiàn),M,過點C作DE⊥OC,分別交OA,OB于點D,E,以FM為對角線作菱形FGMH.已知∠DFE=∠GFH=120°,F(xiàn)G=FE,設(shè)OC=x,圖中陰影部分面積為y,則y與x之間的函數(shù)關(guān)系式是( )
A. y= B. y= C. y=2 D. y=3
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】我縣第一屆運動會需購買A,B兩種獎品,若購買A種獎品4件和B種獎品3件,共需85元;若購買A種獎品3件和B種獎品1件,共需45元.
(1)求A、B兩種獎品的單價各是多少元?
(2)運動會組委會計劃購買A、B兩種獎品共100件,購買費用不超過1150元,且A種獎品的數(shù)量不大于B種獎品數(shù)量的3倍,設(shè)購買A種獎品m件,購買總費用W元,寫出W(元)與m(件)之間的函數(shù)關(guān)系式,求出自變量m的取值范圍,并設(shè)計出購買總費用最少的方案.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】墊球是排球隊常規(guī)訓(xùn)練的重要項目之一.下列圖表中的數(shù)據(jù)是甲、乙、丙三人每人十次墊球測試的成績.測試規(guī)則為連續(xù)接球10個,每墊球到位1個記1分.
運動員甲測試成績表
測試序號 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
成績(分) | 7 | 6 | 8 | 7 | 7 | 5 | 8 | 7 | 8 | 7 |
(1)寫出運動員甲測試成績的眾數(shù)和中位數(shù);
(2)在他們?nèi)酥羞x擇一位墊球成績優(yōu)秀且較為穩(wěn)定的接球能手作為自由人,你認為選誰更合適?為什么?(參考數(shù)據(jù):三人成績的方差分別為、、)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】松山區(qū)種子培育基地用A,B,C三種型號的甜玉米種子共1500粒進行發(fā)芽試驗,從中選出發(fā)芽率高的種子進行推廣,通過試驗知道,C型號種子的發(fā)芽率為80%,根據(jù)試驗數(shù)據(jù)繪制了下面兩個不完整的統(tǒng)計圖:
(1)求C型號種子的發(fā)芽數(shù);
(2)通過計算說明,應(yīng)選哪種型號的種子進行推廣?
(3)如果將所有已發(fā)芽的種子放在一起,從中隨機取出一粒,求取到C型號發(fā)芽種子的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知在數(shù)軸上,一動點從原點出發(fā),沿直線以每秒鐘個單位長度的速度來回移動,其移動方式是先向右移動個單位長度,再向左移動個單位長度,又向右移動個單位長度,再向左移動個單位長度,又向右移動個單位長度…
(1)求出秒鐘后動點所處的位置;
(2)如果在數(shù)軸上還有一個定點,且與原點相距20個單位長度,問:動點從原點出發(fā),可能與點重合嗎?若能,則第一次與點重合需多長時間?若不能,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀材料: 小明在學(xué)習(xí)二次根式后,發(fā)現(xiàn)一些含根號的式子可以寫成另一個式子的平方,如:,善于思考的小明進行了以下探索:
設(shè)(其中均為整數(shù)),則有.
∴.這樣小明就找到了一種把部分的式子化為平方式的方法.
請你仿照小明的方法探索并解決下列問題:
當均為正整數(shù)時,若,用含m、n的式子分別表示,得= ,= ;
(2)利用所探索的結(jié)論,找一組正整數(shù),填空: + =( + )2;
(3)若,且均為正整數(shù),求的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標系中,點O是坐標原點,四邊形ABCO是菱形,點A的坐標為(﹣3,4),點C在x軸的正半軸上,直線AC交y軸于點M,AB邊交于y軸于點H.
(1)連接BM,動點P從點A出發(fā),沿折線ABC方向以1個單位/秒的速度向終點C勻速運動,設(shè)△PMB的面積為S(S≠0),點P的運動時間為t秒,求S與t之間的函數(shù)關(guān)系式(要求寫出自變量t的取值范圍);
(2)在(1)的情況下,當點P在線段AB上運動時,是否存在以BM為腰的等腰三角形BMP?如存在,求出t的值;如不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,AB是☉O的直徑,C為☉O上一點,直線CD與☉O相切于點C,AD⊥CD,垂足為D.
(1)求證:△ACD∽△ABC.
(2)如圖2,將直線CD向下平移與☉O相交于點C,G,但其他條件不變.若AG=4,BG=3,求tan∠CAD的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com