【題目】如圖,在△ABC中,∠ACB=90°,AB=9,cosB= ,把△ABC繞著點C旋轉(zhuǎn),使點B與AB邊上的點D重合,點A落在點E,則點A,E之間的距離為 .
【答案】4
【解析】解:∵在△ABC中,∠ACB=90°,AB=9,cosB= , ∴BC=ABcosB=9× =6,AC= =3 .
∵把△ABC繞著點C旋轉(zhuǎn),使點B與AB邊上的點D重合,點A落在點E,
∴△ABC≌△EDC,BC=DC=6,AC=EC=3 ,∠BCD=∠ACE,
∴∠B=∠CAE.
作CM⊥BD于M,作CN⊥AE于N,則∠BCM= ∠BCD,∠ACN= ∠ACE,
∴∠BCM=∠ACN.
∵在△ANC中,∠ANC=90°,AC=3 ,cos∠CAN=cosB= ,
∴AN=ACcos∠CAN=3 × =2 ,
∴AE=2AN=4 .
所以答案是4 .
【考點精析】關(guān)于本題考查的解直角三角形和旋轉(zhuǎn)的性質(zhì),需要了解解直角三角形的依據(jù):①邊的關(guān)系a2+b2=c2;②角的關(guān)系:A+B=90°;③邊角關(guān)系:三角函數(shù)的定義.(注意:盡量避免使用中間數(shù)據(jù)和除法);①旋轉(zhuǎn)后對應的線段長短不變,旋轉(zhuǎn)角度大小不變;②旋轉(zhuǎn)后對應的點到旋轉(zhuǎn)到旋轉(zhuǎn)中心的距離不變;③旋轉(zhuǎn)后物體或圖形不變,只是位置變了才能得出正確答案.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,將△ABC在網(wǎng)格中(網(wǎng)格中每個小正方形的邊長均為1)依次進行位似變換、軸對稱變換和平移變換后得到△A3B3C3 .
(1)△ABC與△A1B1C1的位似比等于 ;
(2)在網(wǎng)格中畫出△A1B1C1關(guān)于y軸的軸對稱圖形△A2B2C2;
(3)請寫出△A3B3C3是由△A2B2C2怎樣平移得到的?
(4)設點P(x,y)為△ABC內(nèi)一點,依次經(jīng)過上述三次變換后,點P的對應點的坐標為 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某工廠的污水處理程序如下:原始污水必先經(jīng)過A系統(tǒng)處理,處理后的污水(A級水)達到環(huán)保標準(簡稱達標)的概率為p(0<p<1).經(jīng)化驗檢測,若確認達標便可直接排放;若不達標則必須進行B系統(tǒng)處理后直接排放. 某廠現(xiàn)有4個標準水量的A級水池,分別取樣、檢測.多個污水樣本檢測時,既可以逐個化驗,也可以將若干個樣本混合在一起化驗.混合樣本中只要有樣本不達標,則混合樣本的化驗結(jié)果必不達標.若混合樣本不達標,則該組中各個樣本必須再逐個化驗;若混合樣本達標,則原水池的污水直接排放.
現(xiàn)有以下四種方案,
方案一:逐個化驗;
方案二:平均分成兩組化驗;
方案三:三個樣本混在一起化驗,剩下的一個單獨化驗;
方案四:混在一起化驗.
化驗次數(shù)的期望值越小,則方案的越“優(yōu)”.
(Ⅰ) 若 ,求2個A級水樣本混合化驗結(jié)果不達標的概率;
(Ⅱ) 若 ,現(xiàn)有4個A級水樣本需要化驗,請問:方案一,二,四中哪個最“優(yōu)”?
(Ⅲ) 若“方案三”比“方案四”更“優(yōu)”,求p的取值范圍.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在直角坐標系xOy中,曲線C1的方程為 .以坐標原點為極點,以x軸的正半軸為極軸,建立極坐標系,曲線C2的極坐標方程為ρ2﹣8ρsinθ+15=0. (Ⅰ)寫出C1的參數(shù)方程和C2的直角坐標方程;
(Ⅱ)設點P在C1上,點Q在C2上,求|PQ|的最大值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,△ABC各頂點的坐標分別是A(﹣2,﹣4),B(0,﹣4),C(1,﹣1).
(1)在圖中畫出△ABC關(guān)于原點對稱的△AB1C1;
(2)在圖中畫出△ABC繞原點C逆時針旋轉(zhuǎn)90°后的△A2B2C2;
(3)在(2)的條件下,AC邊掃過的面積是 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知四邊形ABCD是矩形,cot∠ADB= ,AB=16.點E在射線BC上,點F在線段BD上,且∠DEF=∠ADB.
(1)求線段BD的長;
(2)設BE=x,△DEF的面積為y,求y關(guān)于x的函數(shù)關(guān)系式,并寫出函數(shù)定義域;
(3)當△DEF為等腰三角形時,求線段BE的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知:如圖,在四邊形ABCD中,AB∥CD,對角線AC、BD交于點E,點F在邊AB上,連接CF交線段BE于點G,CG2=GEGD.
(1)求證:∠ACF=∠ABD;
(2)連接EF,求證:EFCG=EGCB.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知在四邊形ABCD中,AD∥BC,E為邊CB延長線上一點,聯(lián)結(jié)DE交邊AB于點F,聯(lián)結(jié)AC交DE于點G,且 = .
(1)求證:AB∥CD;
(2)如果AD2=DGDE,求證: = .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】甲、乙兩工程隊分別同時開挖兩條600米長的管道,所挖管道長度y(米)與挖掘時間x(天)之間的關(guān)系如圖所示,則下列說法中: ①甲隊每天挖100米;
②乙隊開挖兩天后,每天挖50米;
③甲隊比乙隊提前3天完成任務;
④當x=2或6時,甲乙兩隊所挖管道長度都相差100米.
正確的有 . (在橫線上填寫正確的序號)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com