【題目】已知:如圖,在四邊形ABCD中,AB∥CD,對角線AC、BD交于點E,點F在邊AB上,連接CF交線段BE于點G,CG2=GEGD.
(1)求證:∠ACF=∠ABD;
(2)連接EF,求證:EFCG=EGCB.
【答案】
(1)證明:∵CG2=GEGD,
∴ .
又∵∠CGD=∠EGC,
∴△GCD∽△GEC.
∴∠GDC=∠GCE.
∵AB∥CD,
∴∠ABD=∠BDC.
∴∠ACF=∠ABD.
(2)證明:∵∠ABD=∠ACF,∠BGF=∠CGE,
∴△BGF∽△CGE.
∴ .
又∵∠FGE=∠BGC,
∴△FGE∽△BGC.
∴ .
∴FECG=EGCB.
【解析】(1)先根據(jù)CG2=GEGD得出 ,再由∠CGD=∠EGC可知△GCD∽△GEC,∠GDC=∠GCE.根據(jù)AB∥CD得出∠ABD=∠BDC,故可得出結(jié)論;(2)先根據(jù)∠ABD=∠ACF,∠BGF=∠CGE得出△BGF∽△CGE,故 .再由∠FGE=∠BGC得出△FGE∽△BGC,進(jìn)而可得出結(jié)論.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一個不透明的口袋中裝有4個分別標(biāo)有數(shù)字﹣1,﹣2,3,4的小球,它們的形狀、大小完全相同.小紅先從口袋中隨機(jī)摸出一個小球記下數(shù)字為x;小穎在剩下的3個小球中隨機(jī)摸出一個小球記下數(shù)字為y.
(1)小紅摸出標(biāo)有數(shù)字3的小球的概率是___;
(2)請用列表法或畫樹狀圖的方法表示出由x,y確定的點P(x,y)所有可能的結(jié)果;
(3)若規(guī)定:點P(x,y)在第一象限或第三象限小紅獲勝;點P(x,y)在第二象限或第四象限則小穎獲勝.請分別求出兩人獲勝的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知a、b、c分別為△ABC的內(nèi)角A、B、C的對邊,btanA=2asinB.
(1)求A;
(2)若a= ,2b﹣c=4,求△ABC的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠ACB=90°,AB=9,cosB= ,把△ABC繞著點C旋轉(zhuǎn),使點B與AB邊上的點D重合,點A落在點E,則點A,E之間的距離為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠C=90°,AC=3,BC=2,邊AB的垂直平分線交AC邊于點D,交AB邊于點E,聯(lián)結(jié)DB,那么tan∠DBC的值是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在直角三角形ABC中,∠ACB=90°,AB=10,sinB= ,點O是AB的中點,∠DOE=∠A,當(dāng)∠DOE以點O為旋轉(zhuǎn)中心旋轉(zhuǎn)時,OD交AC的延長線于點D,交邊CB于點M,OE交線段BM于點N.
(1)當(dāng)CM=2時,求線段CD的長;
(2)設(shè)CM=x,BN=y,試求y與x之間的函數(shù)解析式,并寫出定義域;
(3)如果△OMN是以O(shè)M為腰的等腰三角形,請直接寫出線段CM的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知△ABC是邊長為2的等邊三角形,點D在邊BC上,將△ABD沿著直線AD翻折,點B落在點B1處,如果B1D⊥AC,那么BD= .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,在△ABC中,AB=AC,過點A作AD⊥BC,垂足為點D,延長AD至點E,使DE= AD,過點A作AF∥BC,交EC的延長線于點F.
(1)設(shè) = , = ,用 、 的線性組合表示 ;
(2)求 的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,第一個正方形ABCD的位置如圖所示,點A的坐標(biāo)為(2,0),點D的坐標(biāo)為(0,4).延長CB交x軸于點A1 , 作第二個正方形A1B1C1C;延長C1B1交x軸于點A2 , 作第三個正方形A2B2C2C1 , …,按這樣的規(guī)律進(jìn)行下去,第2016個正方形的面積為( )
A.20×( )4030
B.20×( )4032
C.20×( )2016
D.20×( )2015
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com