【題目】操作體驗
(1)如圖1,已知△ABC,請畫出△ABC的中線AD,并判斷△ABD與△ACD的面積大小關(guān)系.
(2)如圖2,在平面直角坐標系中,△ABC的邊BC在x軸上,已知點A(2,4),B(–1,0),C(3,0),試確定過點A的一條直線l,平分△ABC的面積,請寫出直線l的表達式.
綜合運用
(3)如圖3,在平面直角坐標系中,如果A(1,4),B(3,2),那么在直線y=–4x+20上是否存在一點C,使直線OC恰好平分四邊形OACB的面積?若存在,請計算點C的坐標;若不存在,請說明理由.
科目:初中數(shù)學 來源: 題型:
【題目】定義:若a+b=2,則稱a與b是關(guān)于1的平衡數(shù).
(1)直接填寫:①3與_ 是關(guān)于1的平衡數(shù): :
②1-x與________是關(guān)于 1的平衡數(shù)(用含x的代數(shù)式表示);
(2)若,,先化簡a. b,再判斷a與b是否是關(guān)于1的平衡數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,AB是⊙O的直徑,點E為線段OB上一點(不與O,B重合),作EC⊥OB,交⊙O于點C,作直徑CD,過點C的切線交DB的延長線于點P,作AF⊥PC于點F,連接CB.
(1)求證:AC平分∠FAB;
(2)求證:BC2=CECP;
(3)當AB=4且=時,求劣弧的長度.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在平面直角坐標系中,有點A(2,0),B(0,3),C(0,2),且△AOB與△OCD全等.請直接寫出點D的坐標________.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,點A、B、C在數(shù)軸上表示的數(shù)分別為a、b、c,且OA+OB=OC,則下列結(jié)論中:
①abc<0;②a(b+c)>0;③a﹣c=b;④ .
其中正確的個數(shù)有 ( 。
A. 1個 B. 2個 C. 3個 D. 4個
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在菱形ABCD中,AC=6,BD=6,E是BC邊的中點,P,M分別是AC,AB上的動點,連接PE,PM,則PE+PM的最小值是( 。
A. 6 B. 3 C. 2 D. 4.5
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】小明想知道一堵墻上點A的高度(AO⊥OD),但又沒有直接測量的工具,于是設(shè)計了下面的方案,請你先補全方案,再說明理由.
第一步:找一根長度大于OA的直桿,使直桿靠在墻上,且頂端與點A重合,記下直桿與地面的夾角∠ABO;
第二步:使直桿頂端豎直緩慢下滑,直到∠ =∠ .標記此時直桿的底端點D;
第三步:測量 的長度,即為點A的高度.
說明理由:
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在平面直角坐標系中,點A(﹣5,0),以O(shè)A為直徑在第二象限內(nèi)作半圓C,點B是該半圓周上一動點,連接OB、AB,作點A關(guān)于點B的對稱點D,過點D作x軸垂線,分別交直線OB、x軸于點E、F,點F為垂足,當DF=4時,線段EF=_______.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知Rt△OAB,∠OAB=90°,∠ABO=30°,斜邊OB=4,將Rt△OAB繞點O順時針旋轉(zhuǎn)60°,如題圖1,連接BC.
(1)填空:∠OBC= °;
(2)如圖1,連接AC,作OP⊥AC,垂足為P,求OP的長度;
(3)如圖2,點M,N同時從點O出發(fā),在△OCB邊上運動,M沿O→C→B路徑勻速運動,N沿O→B→C路徑勻速運動,當兩點相遇時運動停止,已知點M的運動速度為1.5單位/秒,點N的運動速度為1單位/秒,設(shè)運動時間為x秒,△OMN的面積為y,求當x為何值時y取得最大值?最大值為多少?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com