【題目】在平面直角坐標(biāo)系中,有點A(2,0)B(0,3)C(0,2),且△AOB與△OCD全等.請直接寫出點D的坐標(biāo)________.

【答案】30),(-3,0),(3,2)或(-3,2

【解析】

分情況討論:①當(dāng)OB=OD=3時,②當(dāng)OB=CD=3時,分別作出圖形,求出對應(yīng)的點D的坐標(biāo)即可.

解:①當(dāng)OB=OD=3時,如圖COD1AOBCOD4AOB,此時D點坐標(biāo)為:(3,0),(-3,0);

②當(dāng)OB=CD=3時,如圖,OCD2AOBOCD3AOB,此時D點坐標(biāo)為:(3,2),(-3,2);

綜上所述,AOBOCD全等時,點D的坐標(biāo)為:(3,0),(-30),(3,2)或(-3,2);

故答案為:(3,0),(-3,0),(32)或(-3,2.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在∠△ACBDCE中,ACBCCDCE,∠ACB=∠DCE90°,連接AE、BD交于點O,AEDC交于點M,BDAC交于點N

(1)試判斷AE、BD之間的關(guān)系,并說明理由;

(2)連接CO,則下面兩個結(jié)論中選擇你認(rèn)為正確的一個加以說明①射線CO平分∠ACD ②射線OC平分∠BOE

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,A(0,3),B(30),C(54),∠OAB=OBA=45°,點P為坐標(biāo)系中第一象限內(nèi)一點(不與C重合),若△BAP≌△ABC,則點P坐標(biāo)為_______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,正方形ABCD邊長為3,連接AC,AE平分CAD,交BC的延長線于點E,FAAE,交CB延長線于點F,則EF的長為__________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】本學(xué)期,大興區(qū)開展了恰同學(xué)少年,品詩詞美韻中華傳統(tǒng)詩詞大賽活動小江統(tǒng)計了班級30名同學(xué)四月份的詩詞背誦數(shù)量,具體數(shù)據(jù)如表所示:

詩詞數(shù)量

4

5

6

7

8

9

10

11

人數(shù)

3

4

4

5

7

5

1

1

那么這30名同學(xué)四月份詩詞背誦數(shù)量的眾數(shù)和中位數(shù)分別是  

A. 11,7 B. 7,5 C. 8,8 D. 8,7

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知∠AOB.求作:∠AOB的平分線.(要求:尺規(guī)作圖,保留作圖痕跡,不必寫作法),這種尺規(guī)作圖得到角平分線的依據(jù)是______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】操作體驗

(1)如圖1,已知△ABC,請畫出△ABC的中線AD,并判斷△ABD與△ACD的面積大小關(guān)系.

2)如圖2,在平面直角坐標(biāo)系中,△ABC的邊BC在x軸上,已知點A(2,4),B(–1,0),C(3,0),試確定過點A的一條直線l,平分△ABC的面積,請寫出直線l的表達(dá)式.

綜合運用

(3)如圖3,在平面直角坐標(biāo)系中,如果A(1,4),B(3,2),那么在直線y=4x+20上是否存在一點C,使直線OC恰好平分四邊形OACB的面積?若存在,請計算點C的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】圖書館與學(xué)校相距600m,明明從學(xué)校出發(fā)步行去圖書館,亮亮從圖書館騎車去學(xué)校兩人同時出發(fā),勻速相向而行,他們與學(xué)校的距離Sm)與時間ts)的圖象如圖所示:

根據(jù)圖象回答:

1)明明步行的速度為   m/s;亮亮騎車的速度為   m/s

2)分別寫出明明、亮亮與學(xué)校的距離S1S2與時間t的關(guān)系式.

3)通過計算求出a的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在正方形ABCD的外側(cè),作ADEDCF,連接AFBE(友情提醒:正方形的四條邊都相等,即ABBCCDDA;四個內(nèi)角都是90°,即ABC=∠BCD=∠CDA=∠DAB90°)

1)如圖,若ADEDCF是等邊三角形,求證:AFBE,AFBE;

2)如圖,若ADEDCF為一般三角形,其中AEDF,EDFC,則第(1)問中的結(jié)論仍然成立嗎?若成立,請給予證明;若不成立,請說明理由

查看答案和解析>>

同步練習(xí)冊答案