【題目】如圖,在平行四邊形中,,垂足為點(diǎn),將平行四邊形折疊,使點(diǎn)落在點(diǎn)的位置,點(diǎn)落在點(diǎn)的位置,折痕為.
(1)求證:;
(2)若,求的度數(shù);
(3)連接,求證:四邊形是矩形.
【答案】(1)見解析(2)60°(3)見解析
【解析】
(1)根據(jù)折疊的性質(zhì),得到∠A=∠G,AD=DG,再根據(jù)軸對(duì)稱的性質(zhì)即可得到AE=FG,進(jìn)而運(yùn)用SAS判定△ADE≌△GDF;
(2)根據(jù)BD=AB,可得sinA=,進(jìn)而得到∠A=30°,再根據(jù)DF=CF=FG,即可得到∠FDG=∠DGF=∠A=30°,即可得出∠CFG=∠FDG+∠DGF=60°;
(3)連接CG,根據(jù)BC=DG,BC∥DG,可得四邊形BCGD是平行四邊形,再根據(jù)∠CBD=90°,即可得到四邊形BCGD是矩形.
(1)∵四邊形ABCD是平行四邊形,
∴AB=CD,AD=BC,AD∥BC,∠A=∠C,
由折疊可知,BC=DG,CF=FG,∠G=∠C,EF垂直平分BD,
∴∠A=∠G,AD=DG,
又∵AD⊥BD,
∴EF∥AD∥BC,
∴點(diǎn)E、F分別平分AB、CD,
∴AE=BE=AB=CD=CF=DF,
∴AE=FG,
∴△ADE≌△GDF;
(2)∵AE=BD,AE=BE=AB,
∴BD=AB,
∴sinA=,
∴∠A=30°,
∵DF=CF=FG,
∴∠FDG=∠DGF=∠A=30°,
∴∠CFG=∠FDG+∠DGF=60°;
(3)如圖,連接CG.
由折疊可知,BC=DG,BC∥DG,
∴四邊形BCGD是平行四邊形,
∵AD⊥BD,AD∥BC,
∴BC⊥BD,
∴∠CBD=90°,
∴四邊形BCGD是矩形.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某翻譯團(tuán)為成為2022年冬奧會(huì)志愿者做準(zhǔn)備,該翻譯團(tuán)一共有五名翻譯,其中一名只會(huì)翻譯西班牙語,三名只會(huì)翻譯英語,還有一名兩種語言都會(huì)翻譯.
(1)求從這五名翻譯中隨機(jī)挑選一名會(huì)翻譯英語的概率;
(2)若從這五名翻譯中隨機(jī)挑選兩名組成一組,請(qǐng)用樹狀圖或列表的方法求該紐能夠翻譯上述兩種語言的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,某數(shù)學(xué)興趣小組為測(cè)量一棵古樹BH和教學(xué)樓CG的高,先在A處用高1.5米的測(cè)角儀測(cè)得古樹頂端H的仰角∠HDE為37°,此時(shí)教學(xué)樓頂端G恰好在視線DH上,再向前走8米到達(dá)B處,又測(cè)得教學(xué)樓頂端G的仰角∠GEF為45°,點(diǎn)A、B、C三點(diǎn)在同一水平線上.
(1)求古樹BH的高;
(2)計(jì)算教學(xué)樓CG的高度.
(參考數(shù)據(jù):sin37°≈0.60,cos37°≈0.80,tan37°≈0.75)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,有一個(gè)可以自由轉(zhuǎn)動(dòng)的轉(zhuǎn)盤,其盤面分為4等份,在每一等份分別標(biāo)有對(duì)應(yīng)的數(shù)字2,3,4,5.小明打算自由轉(zhuǎn)動(dòng)轉(zhuǎn)盤10次,現(xiàn)已經(jīng)轉(zhuǎn)動(dòng)了8次,每一次停止后,小明將指針?biāo)笖?shù)字記錄如下:
次數(shù) | 第1次 | 第2次 | 第3次 | 第4次 | 第5次 | 第6次 | 第7次 | 第8次 | 第9次 | 第10次 |
數(shù)字 | 3 | 5 | 2 | 3 | 3 | 4 | 3 | 5 |
(1)求前8次的指針?biāo)笖?shù)字的平均數(shù).
(2)小明繼續(xù)自由轉(zhuǎn)動(dòng)轉(zhuǎn)盤2次,判斷是否可能發(fā)生“這10次的指針?biāo)笖?shù)字的平均數(shù)不小于3.3,且不大于3.5”的結(jié)果?若有可能,計(jì)算發(fā)生此結(jié)果的概率,并寫出計(jì)算過程;若不可能,說明理由.(指針指向盤面等分線時(shí)為無效轉(zhuǎn)次.)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】計(jì)算張老師在黑板上寫了三個(gè)算式,希望同學(xué)們認(rèn)真觀察,發(fā)現(xiàn)規(guī)律.
請(qǐng)你結(jié)合這些算式,解答下列問題:
(1)請(qǐng)你再寫出另外兩個(gè)符合上述規(guī)律的算式;
(2)驗(yàn)證規(guī)律:設(shè)兩個(gè)連續(xù)奇數(shù)為2n+1,2n–1(其中n為正整數(shù)),則它們的平方差是8的倍數(shù);
(3)拓展延伸:“兩個(gè)連續(xù)偶數(shù)的平方差是8的倍數(shù)”,這個(gè)結(jié)論正確嗎?請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了解學(xué)生的課外閱讀情況,七(1)班針對(duì)“你最喜愛的課外閱讀書目”進(jìn)行調(diào)查(每名學(xué)生必須選一類且只能選一類閱讀書目),并根據(jù)調(diào)查結(jié)果列出統(tǒng)計(jì)表,繪制成扇形統(tǒng)計(jì)圖.
男、女生所選類別人數(shù)統(tǒng)計(jì)表
類別 | 男生(人) | 女生(人) |
文學(xué)類 | 12 | 8 |
史學(xué)類 | 5 | |
科學(xué)類 | 6 | 5 |
哲學(xué)類 | 2 |
根據(jù)以上信息解決下列問題
(1) , ;
(2)扇形統(tǒng)計(jì)圖中“科學(xué)類”所對(duì)應(yīng)扇形圓心角度數(shù)為 ;
(3)從選哲學(xué)類的學(xué)生中,隨機(jī)選取兩名學(xué)生參加學(xué)校團(tuán)委組織的辯論賽,請(qǐng)用樹狀圖或列表法求出所選取的兩名學(xué)生都是男生的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】甲、乙施工隊(duì)分別從兩端修一段長(zhǎng)度為380米的公路.在施工過程中,乙隊(duì)曾因技術(shù)改進(jìn)而停工一天,之后加快了施工進(jìn)度并與甲隊(duì)共同按期完成了修路任務(wù).下表是根據(jù)每天工程進(jìn)度繪制而成的.
施工時(shí)間/天 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
累計(jì)完成施工量/米 | 35 | 70 | 105 | 140 | 160 | 215 | 270 | 325 | 380 |
下列說法錯(cuò)誤的是( )
A. 甲隊(duì)每天修路20米
B. 乙隊(duì)第一天修路15米
C. 乙隊(duì)技術(shù)改進(jìn)后每天修路35米
D. 前七天甲,乙兩隊(duì)修路長(zhǎng)度相等
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線與x軸交于A、B兩點(diǎn)(A在B的左側(cè)),與y軸交于點(diǎn)N,過A點(diǎn)的直線l:與y軸交于點(diǎn)C,與拋物線的另一個(gè)交點(diǎn)為D,已知,P點(diǎn)為拋物線上一動(dòng)點(diǎn)(不與A、D重合).
(1)求拋物線和直線l的解析式;
(2)當(dāng)點(diǎn)P在直線l上方的拋物線上時(shí),過P點(diǎn)作PE∥x軸交直線l于點(diǎn)E,作軸交直線l于點(diǎn)F,求的最大值;
(3)設(shè)M為直線l上的點(diǎn),探究是否存在點(diǎn)M,使得以點(diǎn)N、C,M、P為頂點(diǎn)的四邊形為平行四邊形?若存在,求出點(diǎn)M的坐標(biāo);若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn)C為半圓的中點(diǎn),AB是直徑,點(diǎn)D是半圓上一點(diǎn),AC,BD交于點(diǎn)E.若AD=1,BD=7,則CE的長(zhǎng)為_____.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com