【題目】計算張老師在黑板上寫了三個算式,希望同學(xué)們認真觀察,發(fā)現(xiàn)規(guī)律

請你結(jié)合這些算式,解答下列問題:

(1)請你再寫出另外兩個符合上述規(guī)律的算式;

(2)驗證規(guī)律:設(shè)兩個連續(xù)奇數(shù)為2n+1,2n–1(其中n為正整數(shù)),則它們的平方差是8的倍數(shù);

(3)拓展延伸:兩個連續(xù)偶數(shù)的平方差是8的倍數(shù),這個結(jié)論正確嗎?請說明理由

【答案】(1);(2)兩個連續(xù)奇數(shù)的平方差是8的倍數(shù)(3)不正確

【解析】試題分析:觀察所給式子,找出規(guī)律.

根據(jù)平方差公式,化簡即可.

舉例說明或者參照進行運算即可.

試題解析:觀察所給式子:找出規(guī)律:

(2)驗證規(guī)律:設(shè)兩個連續(xù)奇數(shù)為2n+1,2n-1(其中n為正整數(shù)),則它們的平方差是8的倍數(shù);

故兩個連續(xù)奇數(shù)的平方差是8的倍數(shù).

(3)不正確,

解法一:舉反例:

因為12不是8的倍數(shù),故這個結(jié)論不正確,

解法二:設(shè)這兩個偶數(shù)位2n2n+2,

因為8n+4不是8的倍數(shù),故這個結(jié)論不正確.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知一次函數(shù)y=﹣x+my2x+n的圖象都經(jīng)過A(﹣4,0),且與y軸分別交于B、C兩點,則ABC的面積為( 。

A.48B.36C.24D.18

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,C是⊙O上一點,點P在直徑AB的延長線上,⊙O的半徑為3,PB=2,PC=4.

(1)求證:PC是⊙O的切線.

(2)求tan∠CAB的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某商場銷售一種小商品,每件進貨價為190元.調(diào)查發(fā)現(xiàn),當銷售價為210元時,平均每天能銷售8件;當銷售價每降低2元時,平均每天就能多銷售4件.設(shè)每件小商品降價元,平均每天銷售件.

1)直接寫出之間的函數(shù)關(guān)系式(不必寫出的取值范圍);

2)商場要想使這種小商品平均每天的銷售利潤達到280元,求每件小商品的銷售價應(yīng)定為多少元?

3)設(shè)每天的銷售總利潤為元,求之間的函數(shù)關(guān)系式;每件商品降價多少元時,每天的總利潤最大?最大利潤是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標系中,直線軸交于點,與軸交于點,拋物線經(jīng)過點

(1)、滿足的關(guān)系式及的值.

(2)時,若的函數(shù)值隨的增大而增大,求的取值范圍.

(3)如圖,當時,在拋物線上是否存在點,使的面積為1?若存在,請求出符合條件的所有點的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平行四邊形中,,垂足為點,將平行四邊形折疊,使點落在點的位置,點落在點的位置,折痕為.

1)求證:;

2)若,求的度數(shù);

3)連接,求證:四邊形是矩形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線軸于、兩點,其中點坐標為,與軸交于點.

1)求拋物線的函數(shù)表達式;

2)如圖①,連接,點在拋物線上,且滿足.求點的坐標;

3)如圖②,點軸下方拋物線上任意一點,點是拋物線對稱軸與軸的交點,直線、分別交拋物線的對稱軸于點、.請問是否為定值?如果是,請求出這個定值;如果不是,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,∠A=90°,∠ABC=30°,AC=3,動點D從點A出發(fā),在AB邊上以每秒1個單位的速度向點B運動,連結(jié)CD,作點A關(guān)于直線CD的對稱點E,設(shè)點D運動時間為t(s).

(1)若△BDE是以BE為底的等腰三角形,求t的值;

(2)若△BDE為直角三角形,求t的值;

(3)當S△BCE時,所有滿足條件的t的取值范圍 (所有數(shù)據(jù)請保留準確值,參考數(shù)據(jù):tan15°=2﹣).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校初中部舉行詩詞大會預(yù)選賽,學(xué)校對參賽同學(xué)獲獎情況進行統(tǒng)計,繪制了如下兩幅不完整的統(tǒng)計圖.請結(jié)合圖中相關(guān)數(shù)據(jù)解答下列問題:

1)參加此次詩詞大會預(yù)選賽的同學(xué)共有 人;

2)在扇形統(tǒng)計圖中,“三等獎”所對應(yīng)的扇形的圓心角的度數(shù)為

3)將條形統(tǒng)計圖補充完整;

4)若獲得一等獎的同學(xué)中有來自七年級,來自九年級,其余的來自八年級,學(xué)校決定從獲得一等獎的同學(xué)中任選兩名同學(xué)參加全市詩詞大會比賽,請通過列表或樹狀圖方法求所選兩名同學(xué)中,恰好是一名七年級和一名九年級同學(xué)的概率.

查看答案和解析>>

同步練習冊答案