【題目】 +(2﹣ )0﹣(﹣ )﹣2+|﹣1|
【答案】解: +(2﹣ )0﹣(﹣ )﹣2+|﹣1|=4+1﹣4+1=2.
【解析】根據(jù)絕對值、算術(shù)平方根和零指數(shù)冪的意義計算.本題考查了絕對值的運算:實數(shù)的運算和在有理數(shù)范圍內(nèi)一樣,值得一提的是,實數(shù)既可以進行加、減、乘、除、乘方運算,又可以進行開方運算,其中正實數(shù)可以開平方.注意零指數(shù)冪的意義.
【考點精析】掌握零指數(shù)冪法則和整數(shù)指數(shù)冪的運算性質(zhì)是解答本題的根本,需要知道零次冪和負整數(shù)指數(shù)冪的意義: a0=1(a≠0);a-p=1/ap(a≠0,p為正整數(shù));aman=am+n(m、n是正整數(shù));(am)n=amn(m、n是正整數(shù));(ab)n=anbn(n是正整數(shù));am/an=am-n(a不等于0,m、n為正整數(shù));(a/b)n=an/bn(n為正整數(shù)).
科目:初中數(shù)學 來源: 題型:
【題目】如圖,△ABC中,∠BAC=90°,AB=AC,AD⊥BC于D,AE平分∠BAD,交BC于E,在△ABC外有一點F,使FA⊥AE,FC⊥BC.
(1)求證:BE=CF;
(2)在AB上取一點M,使得BM=2DE,連接ME
①求證:ME⊥BC;
②求∠EMC的度數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知:如圖,△ABC是等邊三角形,BD⊥AC,E是BC延長線上的一點,且∠CED=30°.
(1)求證:DB=DE.
(2)在圖中過D作DF⊥BE交BE于F,若CF=3,求△ABC的周長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】(1)如圖①,已知:在△ABC中,∠BAC=90°,AB=AC,直線m經(jīng)過點A,BD⊥直線m, CE⊥直線m,垂足分別為點D、E.證明:DE=BD+CE.
(2)如圖②,將(1)中的條件改為:在△ABC中,AB=AC,D、A、E三點都在直線m上,并且有∠BDA=∠AEC=∠BAC=α,其中α為任意鈍角.請問結(jié)論DE=BD+CE是否成立?如成立,請你給出證明;若不成立,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某校九年級體育模擬測試中,六名男生引體向上的成績?nèi)缦拢▎挝唬簜):10、6、9、11、8、10,下列關(guān)于這組數(shù)據(jù)描述正確的是( )
A.極差是6
B.眾數(shù)是10
C.平均數(shù)是9.5
D.方差是16
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在平面直角坐標系中,把橫縱坐標都是整數(shù)的點稱為“整點”.
(1)直接寫出函數(shù)y= 圖象上的所有“整點”A1 , A2 , A3 , …的坐標;
(2)在(1)的所有整點中任取兩點,用樹狀圖或列表法求出這兩點關(guān)于原點對稱的概率.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在正方形ABCD中,E、F是對角線BD上兩點,且∠EAF=45°,將△ADF繞點A順時針旋轉(zhuǎn)90°后,得到△ABQ,連接EQ,求證:
(1)EA是∠QED的平分線;
(2)EF2=BE2+DF2 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在ABCD中,點E,F(xiàn)在對角線AC上,且AE=CF.求證:
(1)DE=BF;
(2)四邊形DEBF是平行四邊形.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com