【題目】如圖,已知一個直角三角形紙片ACB,其中∠ACB=90°,AC=4,BC=3,E、F分別是AC、AB邊上點,連接EF.

(1)圖①,若將紙片ACB的一角沿EF折疊,折疊后點A落在AB邊上的點D處,且使S四邊形ECBF=3S△EDF,求AE的長;

(2)如圖②,若將紙片ACB的一角沿EF折疊,折疊后點A落在BC邊上的點M處,且使MF∥CA.

①試判斷四邊形AEMF的形狀,并證明你的結論;

②求EF的長;

(3)如圖③,若FE的延長線與BC的延長線交于點N,CN=1,CE=,求的值.

【答案】(1);(2)四邊形AEMF為菱形,理由詳見解析;;(3)

【解析】

試題分析:(1)先利用折疊的性質得到EF⊥AB,△AEF≌△DEF,則S△AEF≌S△DEF,則易得S△ABC=4S△AEF,再證明Rt△AEF∽Rt△ABC,然后根據(jù)相似三角形的性質得到=(2,再利用勾股定理求出AB即可得到AE的長;(2)①通過證明四條邊相等判斷四邊形AEMF為菱形;

②連結AM交EF于點O,如圖②,設AE=x,則EM=x,CE=4﹣x,先證明△CME∽△CBA得到==,解出x后計算出CM=,再利用勾股定理計算出AM,然后根據(jù)菱形的面積公式計算EF;

(3)如圖③,作FH⊥BC于H,先證明△NCE∽△NFH,利用相似比得到FH:NH=4:7,設FH=4x,NH=7x,則CH=7x﹣1,BH=3﹣(7x﹣1)=4﹣7x,再證明△BFH∽△BAC,利用相似比可計算出x=,則可計算出FH和BH,接著利用勾股定理計算出BF,從而得到AF的長,于是可計算出的值.

試題解析:(1)如圖①,

∵△ACB的一角沿EF折疊,折疊后點A落在AB邊上的點D處,

∴EF⊥AB,△AEF≌△DEF,

∴S△AEF≌S△DEF,

∵S四邊形ECBF=3S△EDF,

∴S△ABC=4S△AEF,

在Rt△ABC中,∵∠ACB=90°,AC=4,BC=3,

∴AB==5,

∵∠EAF=∠BAC,

∴Rt△AEF∽Rt△ABC,

=(2,即(2=,

∴AE=

(2)①四邊形AEMF為菱形.理由如下:

如圖②,∵△ACB的一角沿EF折疊,折疊后點A落在AB邊上的點D處,

∴AE=EM,AF=MF,∠AFE=∠MFE,

∵MF∥AC,

∴∠AEF=∠MFE,

∴∠AEF=∠AFE,

∴AE=AF,

∴AE=EM=MF=AF,

∴四邊形AEMF為菱形;

②連結AM交EF于點O,如圖②,

設AE=x,則EM=x,CE=4﹣x,

∵四邊形AEMF為菱形,

∴EM∥AB,

∴△CME∽△CBA,

==,即==,解得x=,CM=,

在Rt△ACM中,AM===

∵S菱形AEMF=EFAM=AECM,

∴EF=2×=;

(3)如圖③,作FH⊥BC于H,

∵EC∥FH,

∴△NCE∽△NFH,

∴CN:NH=CE:FH,即1:NH=:FH,

∴FH:NH=4:7,

設FH=4x,NH=7x,則CH=7x﹣1,BH=3﹣(7x﹣1)=4﹣7x,

∵FH∥AC,

∴△BFH∽△BAC,

∴BH:BC=FH:AC,即(4﹣7x):3=4x:4,解得x=

∴FH=4x=,BH=4﹣7x=,

在Rt△BFH中,BF==2,

∴AF=AB﹣BF=5﹣2=3,

=

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】-12的數(shù)是______.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,邊長為1的正方形ABCD的對角線AC、BD相交于點O.有直角∠MPN,使直角頂點P與點O重合,直角邊PM、PN分別與OA、OB重合,然后逆時針旋轉∠MPN,旋轉角為θ(0°<θ<90°),PM、PN分別交AB、BC于E、F兩點,連接EF交OB于點G,則下列結論中正確的是

(1)EF=OE;(2)S四邊形OEBF:S正方形ABCD=1:4;(3)BE+BF=OA;(4)在旋轉過程中,當△BEF與△COF的面積之和最大時,AE=;(5)OGBD=AE2+CF2

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如果代數(shù)式2y2﹣y的值是1,那么代數(shù)式8y2﹣4y+1的值等于_____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】矩形的正投影不可能是(

A.線段B.矩形C.正方形D.梯形

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】若代數(shù)式2x2+3y+7的值為8,那么代數(shù)式6x2+9y+8的值為

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】下列計算中,錯誤的是(  )

A. -7-(-2)=-5 B. +5-(-4)=1

C. -3-(-3)=0 D. +3-(-2)=5

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知A=3x2﹣ax+6x﹣2,B=﹣3x2+4ax﹣7,若A+B的值不含x項,求a的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】多項式x2﹣3kxy﹣3y2+6xy﹣8不含xy項,則k=

查看答案和解析>>

同步練習冊答案