【題目】如圖,在10×10正方形網(wǎng)格中,每個(gè)小正方形的邊長(zhǎng)均為1個(gè)單位.將△ABC向下平移4個(gè)單位,得到△A′B′C′,再把△A′B′C′繞點(diǎn)C'順時(shí)針旋轉(zhuǎn)90°,得到△A″B″C′,
(1)請(qǐng)你畫出△A′B′C′和△A″B″C′(不要求寫畫法).
(2)求出線段A′C′在旋轉(zhuǎn)過(guò)程中所掃過(guò)的面積.(結(jié)果保留)
【答案】(1)見(jiàn)解析;(2) 2π.
【解析】
(1)先利用網(wǎng)格特點(diǎn)和平移的性質(zhì)畫出點(diǎn)A、B、C平移后的對(duì)應(yīng)點(diǎn)A′、B′、C′,從而得到△A′B′C′,然后利用網(wǎng)格特點(diǎn)和旋轉(zhuǎn)的性質(zhì)畫出點(diǎn)A′、C′的對(duì)應(yīng)點(diǎn)A″、B″,從而得到△A″B″C′;
(2)先利用勾股定理計(jì)算A′C′,由于線段A′C′在旋轉(zhuǎn)過(guò)程中所掃過(guò)的部分為以C′為圓心,A′C′為半徑,圓心角為90°的扇形,于是根據(jù)扇形面積公式可計(jì)算出線段A′C′在旋轉(zhuǎn)過(guò)程中所掃過(guò)的面積.
(1)如圖,△A′B′C′和△A″B″C′為所作;
(2)A′C′=,
所以線段A′C′在旋轉(zhuǎn)過(guò)程中所掃過(guò)的面積=×(2)2=2π.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,點(diǎn),射線與y軸的正半軸的夾角為45°,點(diǎn)B是射線上的動(dòng)點(diǎn).
(1)如圖25-1,當(dāng)線段的值最小時(shí),求點(diǎn)B的坐標(biāo);
(2)如圖25-2,且,軸交射線于點(diǎn)D,且,求點(diǎn)C的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,將直線y=x向下平移b個(gè)單位長(zhǎng)度后得到直線l,l與反比例函數(shù)y=(k>0,x>0)的圖象相交于點(diǎn)A,與x軸相交于點(diǎn)B,則OA2﹣OB2=10,則k的值是( )
A. 5 B. 10 C. 15 D. 20
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,折疊矩形ABCD的一邊AD,使點(diǎn)D落在BC邊的點(diǎn)F處.
(1)如圖1,若折痕,且,求矩形ABCD的周長(zhǎng);
(2)如圖2,在AD邊上截取DG=CF,連接GE,BD,相交于點(diǎn)H,求證:BD⊥GE.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】課間,小明拿著老師的等腰三角板玩,不小心掉到兩墻之間,如圖.
(1)求證:△ADC≌△CEB;
(2)從三角板的刻度可知AC=25cm,請(qǐng)你幫小明求出砌墻磚塊的厚度a的大。繅K磚的厚度相等).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(問(wèn)題情境)
徐老師給愛(ài)好學(xué)習(xí)的小敏和小捷提出這樣一個(gè)問(wèn)題:
如圖1,△ABC中,∠B=2∠C,AD是∠BAC的平分線.求證:AB+BD=AC
小敏的證明思路是:在AC上截取AE=AB,連接DE.(如圖2)…
小捷的證明思路是:延長(zhǎng)CB至點(diǎn)E,使BE=AB,連接AE. 可以證得:AE=DE(如圖3)…
請(qǐng)你任意選擇一種思路繼續(xù)完成下一步的證明.
(變式探究)
“AD是∠BAC的平分線”改成“AD是BC邊上的高”,其它條件不變.(如圖4),AB+BD=AC成立嗎?若成立,請(qǐng)證明;若不成立,寫出你的正確結(jié)論,并說(shuō)明理由.
(遷移拓展)
△ABC中,∠B=2∠C. 求證:AC2=AB2+ABBC. (如圖5)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,直線l:y=x+m與x軸、y軸分別交于點(diǎn)A和點(diǎn)B(0,﹣1),拋物線y=x2+bx+c經(jīng)過(guò)點(diǎn)B,與直線l的另一個(gè)交點(diǎn)為C(4,n).
(1)求n的值和拋物線的解析式;
(2)點(diǎn)D在拋物線上,DE∥y軸交直線l于點(diǎn)E,點(diǎn)F在直線l上,且四邊形DFEG為矩形(如圖2),設(shè)點(diǎn)D的橫坐標(biāo)為t(0<t<4),矩形DFEG的周長(zhǎng)為p,求p與t的函數(shù)關(guān)系式以及p的最大值;
(3)將△AOB繞平面內(nèi)某點(diǎn)M旋轉(zhuǎn)90°或180°,得到△A1O1B1,點(diǎn)A、O、B的對(duì)應(yīng)點(diǎn)分別是點(diǎn)A1、O1、B1.若△A1O1B1的兩個(gè)頂點(diǎn)恰好落在拋物線上,那么我們就稱這樣的點(diǎn)為“落點(diǎn)”,請(qǐng)直接寫出“落點(diǎn)”的個(gè)數(shù)和旋轉(zhuǎn)180°時(shí)點(diǎn)A1的橫坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,若點(diǎn)是線段上的動(dòng)點(diǎn)(不與,重合),分別以、為邊向線段的同一側(cè)作等邊和等邊.
(1)圖1中,連接、,相交于點(diǎn),設(shè),那么 ;
(2)如圖2,若點(diǎn)固定,將繞點(diǎn)按順時(shí)針?lè)较蛐D(zhuǎn)(旋轉(zhuǎn)角小于),此時(shí)的大小是否發(fā)生變化?請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某射箭隊(duì)準(zhǔn)備從王方、李明二人中選拔1人參加射箭比賽,在選拔賽中,兩人各射箭10次的成績(jī)(單位:環(huán)數(shù))如下:
次數(shù) | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
王方 | 7 | 10 | 9 | 8 | 6 | 9 | 9 | 7 | 10 | 10 |
李明 | 8 | 9 | 8 | 9 | 8 | 8 | 9 | 8 | 10 | 8 |
(1)根據(jù)以上數(shù)據(jù),將下面兩個(gè)表格補(bǔ)充完整:
王方10次射箭得分情況
環(huán)數(shù) | 6 | 7 | 8 | 9 | 10 | |
頻數(shù) | ______ | ______ | ______ | ______ | ______ | |
頻率 | ______ | ______ | ______ | ______ | ______ |
李明10次射箭得分情況
環(huán)數(shù) | 6 | 7 | 8 | 9 | 10 |
頻數(shù) | ______ | ______ | ______ | ______ | ______ |
頻率 | ______ | ______ | ______ | ______ | ______ |
(2)分別求出兩人10次射箭得分的平均數(shù);
(3)從兩人成績(jī)的穩(wěn)定性角度分析,應(yīng)選派誰(shuí)參加比賽合適.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com