【題目】如圖1,直線(xiàn)l:y=x+m與x軸、y軸分別交于點(diǎn)A和點(diǎn)B(0,﹣1),拋物線(xiàn)y=x2+bx+c經(jīng)過(guò)點(diǎn)B,與直線(xiàn)l的另一個(gè)交點(diǎn)為C(4,n).
(1)求n的值和拋物線(xiàn)的解析式;
(2)點(diǎn)D在拋物線(xiàn)上,DE∥y軸交直線(xiàn)l于點(diǎn)E,點(diǎn)F在直線(xiàn)l上,且四邊形DFEG為矩形(如圖2),設(shè)點(diǎn)D的橫坐標(biāo)為t(0<t<4),矩形DFEG的周長(zhǎng)為p,求p與t的函數(shù)關(guān)系式以及p的最大值;
(3)將△AOB繞平面內(nèi)某點(diǎn)M旋轉(zhuǎn)90°或180°,得到△A1O1B1,點(diǎn)A、O、B的對(duì)應(yīng)點(diǎn)分別是點(diǎn)A1、O1、B1.若△A1O1B1的兩個(gè)頂點(diǎn)恰好落在拋物線(xiàn)上,那么我們就稱(chēng)這樣的點(diǎn)為“落點(diǎn)”,請(qǐng)直接寫(xiě)出“落點(diǎn)”的個(gè)數(shù)和旋轉(zhuǎn)180°時(shí)點(diǎn)A1的橫坐標(biāo).
【答案】(1)拋物線(xiàn)的解析式為y=x2﹣x﹣1;(2)p=﹣(t﹣2)2+,當(dāng)t=2時(shí),p有最大值.(3)“落點(diǎn)”的個(gè)數(shù)有4個(gè),點(diǎn)A1坐標(biāo)為(,0)或().
【解析】
試題分析:(1)把點(diǎn)B的坐標(biāo)代入直線(xiàn)解析式求出m的值,再把點(diǎn)C的坐標(biāo)代入直線(xiàn)求解即可得到n的值,然后利用待定系數(shù)法求二次函數(shù)解析式解答;(2)令y=0求出點(diǎn)A的坐標(biāo),從而得到OA、OB的長(zhǎng)度,利用勾股定理列式求出AB的長(zhǎng),然后根據(jù)兩直線(xiàn)平行,內(nèi)錯(cuò)角相等可得∠ABO=∠DEF,再解直角三角形用DE表示出EF、DF,根據(jù)矩形的周長(zhǎng)公式表示出p,利用直線(xiàn)和拋物線(xiàn)的解析式表示DE的長(zhǎng),整理即可得到P與t的關(guān)系式,再利用二次函數(shù)的最值問(wèn)題解答;(3)根據(jù)逆時(shí)針旋轉(zhuǎn)角為90°可得A1O1∥y軸時(shí),B1O1∥x軸,旋轉(zhuǎn)角是180°判斷出A1O1在x軸上,B1O1∥y軸,根據(jù)B1縱坐標(biāo)為1,求出B1橫坐標(biāo)即可解決問(wèn)題.
試題解析:(1)∵直線(xiàn)l:y=x+m經(jīng)過(guò)點(diǎn)B(0,﹣1),
∴m=﹣1,
∴直線(xiàn)l的解析式為y=x﹣1,
∵直線(xiàn)l:y=x﹣1經(jīng)過(guò)點(diǎn)C(4,n),
∴n=×4﹣1=2,
∵拋物線(xiàn)y=x2+bx+c經(jīng)過(guò)點(diǎn)C(4,2)和點(diǎn)B(0,﹣1),
∴,
解得,
∴拋物線(xiàn)的解析式為y=x2﹣x﹣1;
(2)令y=0,則x﹣1=0,
解得x=,
∴點(diǎn)A的坐標(biāo)為(,0),
∴OA=,
在Rt△OAB中,OB=1,
∴AB==,
∵DE∥y軸,
∴∠ABO=∠DEF,
在矩形DFEG中,EF=DEcosDEF=DE=DE,
DF=DEsin∠DEF=DE=DE,
∴p=2(DF+EF)=2(+)DE=DE,
∵點(diǎn)D的橫坐標(biāo)為t(0<t<4),
∴D(t, t2﹣t﹣1),E(t, t﹣1),
∴DE=(t﹣1)﹣(t2﹣t﹣1)=﹣t2+2t,
∴p=×(﹣t2+2t)=﹣t2+t,
∵p=﹣(t﹣2)2+,且﹣<0,
∴當(dāng)t=2時(shí),p有最大值.
(3)“落點(diǎn)”的個(gè)數(shù)有4個(gè),如圖1,圖2,圖3,圖4所示.
如圖3,圖4中,B1O1=BO=1,則x2﹣﹣1=1,解得x=,
∵A1O1=,
∴圖3中,OA1=OO1+A1O1═,圖4中OA1═OO1+O1A1=
∴點(diǎn)A1坐標(biāo)為(,0)或().
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在ΔABC中,∠C=90°,∠B=30°,以點(diǎn)A為圓心,任意長(zhǎng)為半徑畫(huà)弧分別交AB、AC于點(diǎn)M、N.再分別以點(diǎn)M、N為圓心,大于MN的長(zhǎng)為半徑畫(huà)弧,兩弧交于P點(diǎn),連接AP并延長(zhǎng)交BC于點(diǎn)D,則下列說(shuō)法中:①AD是∠BAC的平分線(xiàn);②∠ADC=60°;③點(diǎn)D與AB中點(diǎn)的連線(xiàn)垂直平分AB;④SΔDAC:SΔABC=1:3;正確的是( )
A.①③B.②④C.①②③D.①②③④
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】閱讀下列材料,解答問(wèn)題
(2x﹣5)2+(3x+7)2=(5x+2)2
解:設(shè)m=2x﹣5,n=3x+7,則m+n=5x+2
則原方程可化為m2+n2=(m+n)2
所以mn=0,即(2x﹣5)(3x+7)=0
解之得,x1=,x2=﹣
請(qǐng)利用上述方法解方程(4x﹣5)2+(3x﹣2)2=(x﹣3)2
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】“校園安全”受到全社會(huì)的廣泛關(guān)注,東營(yíng)市某中學(xué)對(duì)部分學(xué)生就校園安全知識(shí)的了解程度,采用隨機(jī)抽樣調(diào)查的方式,并根據(jù)收集到的信息進(jìn)行統(tǒng)計(jì),繪制了下面兩幅尚不完整的統(tǒng)計(jì)圖.請(qǐng)你根據(jù)統(tǒng)計(jì)圖中所提供的信息解答下列問(wèn)題:
(1)接受問(wèn)卷調(diào)查的學(xué)生共有_______人,扇形統(tǒng)計(jì)圖中“基本了解”部分所對(duì)應(yīng)扇形的圓心角為_(kāi)______°;
(2)請(qǐng)補(bǔ)全條形統(tǒng)計(jì)圖;
(3)若該中學(xué)共有學(xué)生900人,請(qǐng)根據(jù)上述調(diào)查結(jié)果,估計(jì)該中學(xué)學(xué)生中對(duì)校園安全知識(shí)達(dá)到“了解”和“基本了解”程度的總?cè)藬?shù);
(4)若從對(duì)校園安全知識(shí)達(dá)到“了解”程度的3個(gè)女生和2個(gè)男生中隨機(jī)抽取2人參加校園安全知識(shí)競(jìng)賽,請(qǐng)用樹(shù)狀圖或列表法求出恰好抽到1個(gè)男生和1個(gè)女生的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】A、B兩輛汽車(chē)同時(shí)從相距330千米的甲、乙兩地相向而行,s(千米)表示汽車(chē)與甲地的距離,t(分)表示汽車(chē)行駛的時(shí)間,如圖,L1,L2分別表示兩輛汽車(chē)的s與t的關(guān)系.
(1)L1表示哪輛汽車(chē)到甲地的距離與行駛時(shí)間的關(guān)系?
(2)汽車(chē)B的速度是多少?
(3)求L1,L2分別表示的兩輛汽車(chē)的s與t的關(guān)系式.
(4)2小時(shí)后,兩車(chē)相距多少千米?
(5)行駛多長(zhǎng)時(shí)間后,A、B兩車(chē)相遇?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,AB=AC=4,∠BAC=120°,M是BC的中點(diǎn),點(diǎn)E是AB邊上的動(dòng)點(diǎn),點(diǎn)F是線(xiàn)段BM上的動(dòng)點(diǎn),則ME+EF的最小值等于___.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90°,∠ABC=30°,CD平分∠ACB.
(1)尺規(guī)作圖:作線(xiàn)段AB的垂直平分線(xiàn)l;
(要求:保留作圖痕跡,不寫(xiě)作法)
(2)記直線(xiàn)l與AB,CD的交點(diǎn)分別是點(diǎn)E,F.當(dāng)AC=4時(shí),求EF的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,一個(gè)四邊形紙片ABCD,∠B=∠D=90°,把紙片按如圖所示折疊,使點(diǎn)B落在AD邊上的B'點(diǎn),AE是折痕。
(1)試判斷B'E與DC的位置關(guān)系并說(shuō)明理由。
(2)如果∠C=130°,求∠AEB的度數(shù)。
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某學(xué)校為了增強(qiáng)學(xué)生體質(zhì),決定開(kāi)設(shè)以下體育課外活動(dòng)項(xiàng)目:A:籃球 B:乒乓球C:羽毛球 D:足球,為了解學(xué)生最喜歡哪一種活動(dòng)項(xiàng)目,隨機(jī)抽取了部分學(xué)生進(jìn)行調(diào)查,并將調(diào)查結(jié)果繪制成了兩幅不完整的統(tǒng)計(jì)圖,請(qǐng)回答下列問(wèn)題:
(1)這次被調(diào)查的學(xué)生共有 人;
(2)請(qǐng)你將條形統(tǒng)計(jì)圖(2)補(bǔ)充完整;
(3)在平時(shí)的乒乓球項(xiàng)目訓(xùn)練中,甲、乙、丙、丁四人表現(xiàn)優(yōu)秀,現(xiàn)決定從這四名同學(xué)中任選兩名參加乒乓球比賽,求恰好選中甲、乙兩位同學(xué)的概率(用樹(shù)狀圖或列表法解答)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com