【題目】希望工程辦公室收到各界人士捐款共計(jì)1500萬元,決定用此款項(xiàng)來資助貧困失學(xué)兒童,如果每名失學(xué)兒童可獲得500元資助,則共可資助失學(xué)兒童多少名,用科學(xué)記數(shù)法表示為( )
A. 1.5×103名 B. 1.5×104名 C. 3×104名 D. 3×103名
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】題目:如圖①,在四邊形中, =,∠=∠,那么=嗎?請(qǐng)說明理由.
小明的作法如下:
如圖②,連結(jié).
∵=,∠=∠, =.
∴△≌△.
所以=.
(1)小明的作法錯(cuò)誤的原因是 .
(2)請(qǐng)正確解答這道題目.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,OD平分∠BOC,OE平分∠AOC.若∠BOC=70°,∠AOC=50°.
(1)求出∠AOB及其補(bǔ)角的度數(shù);
(2)請(qǐng)求出∠DOC和∠AOE的度數(shù),并判斷∠DOE與∠AOB是否互補(bǔ),并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,OM是∠AOC的平分線,ON是∠BOC的平分線.
(1)如圖1,當(dāng)∠AOB=90°,∠BOC=60°時(shí),∠MON的度數(shù)是多少?為什么?
(2)如圖2,當(dāng)∠AOB=70°,∠BOC=60°時(shí),∠MON= (直接寫出結(jié)果)
(3)如圖3,當(dāng)∠AOB=α,∠BOC=β時(shí),猜想:∠MON= (直接寫出結(jié)果).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】【新知理解】
如圖①,若點(diǎn)、在直線l同側(cè),在直線l上找一點(diǎn),使的值最小.
作法:作點(diǎn)關(guān)于直線l的對(duì)稱點(diǎn),連接交直線l于點(diǎn),則點(diǎn)即為所求.
【解決問題】
如圖②,是邊長(zhǎng)為6cm的等邊三角形的中線,點(diǎn)、分別在、上,則的最小值為 cm;
【拓展研究】
如圖③,在四邊形的對(duì)角線上找一點(diǎn),使.(保留作圖痕跡,并對(duì)作圖方法進(jìn)行說明)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,在四邊形中, ,點(diǎn)是的中點(diǎn).
(1)求證: 是等腰三角形:
(2)當(dāng)= ° 時(shí), 是等邊三角形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,AB、BC、AC三邊的長(zhǎng)分別為, , ,求這個(gè)三角形的面積.小明同學(xué)在解答這道題時(shí),先畫一個(gè)正方形網(wǎng)格(每個(gè)小正方形的邊長(zhǎng)為1),再在網(wǎng)格中畫出格點(diǎn)△ABC(即△ABC三個(gè)頂點(diǎn)都在小正方形的頂點(diǎn)處),如圖1所示.這樣不需求△ABC的高,而借用網(wǎng)格就能計(jì)算出它的面積.
(1)△ABC的面積為 .
(2)若△DEF的三邊DE、EF、DF長(zhǎng)分別為, , ,請(qǐng)?jiān)趫D2的正方形網(wǎng)格中畫出相應(yīng)的△DEF,并求出△DEF的面積為 .
(3)在△ABC中,AB=2,AC=4,BC=2,以AB為邊向△ABC外作△ABD(D與C在AB異側(cè)),使△ABD為等腰直角三角形,則線段CD的長(zhǎng)為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,△OAB的邊OA在x軸的正半軸上,OA=AB,邊OB的中點(diǎn)C在雙曲線y=上,將△OAB沿OB翻折后,點(diǎn)A的對(duì)應(yīng)點(diǎn)A′,正好落在雙曲線y=上,△OAB的面積為6,則k為( )
A.1 B.2 C.3 D.4
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com