【題目】如圖,平行四邊形ABCD的頂點為AC在雙曲線y1=上,B、D在雙曲線上,k1=2k2k10),ABy軸,=24,則k2的值為(

A.4B.4C.D.

【答案】A

【解析】

利用平行四邊形的性質(zhì)設Ax,y1)、Bx、y2),根據(jù)反比例函數(shù)的圖象關于原點對稱的性可知C-x,-y1)、D-x-y2);然后由反比例函數(shù)圖象上點的坐標特征,將點A、B的坐標分別代入它們所在的函數(shù)圖象的解析式,求得y1=-2y2;最后根據(jù)SABCD=|2x|=24可以求得k2=y2x=4

解:在ABCD中,ABCDAB=CD(平行四邊形的對應邊平行且相等),故設Ax,y1)、Bx、y2),則根據(jù)反比例函數(shù)的圖象關于原點對稱的性質(zhì)知,C-x-y1)、D-x、-y2).
A在雙曲線y1=上,B在雙曲線上,
x=-x=,
-=;
又∵k1=2k2k10),
y1=-2y2;
SABCD=24,
|2x|=6|y2x|=24,
解得y2x=±4,
∵雙曲線y2=位于第一、三象限,
k2=4.

故答案是:A

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知雙曲線,直線與雙曲線交于點,將直線向下平移與雙曲線交于點,與軸交于點,與雙曲線交于點,,,則的值為__________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,已知拋物線頂點C1,4),且與y軸交于點D0,3).

1)求該拋物線的解析式及其與x軸的交點A、B的坐標;

2)將直線AC繞點A順時針旋轉(zhuǎn)45°后得到直線AE,與拋物線的另一個交點為E,請求出點E的坐標;

3)如圖2,點P是該拋物線上位于第一象限的點,線段APBD于點M、交y軸于點N,△BMP和△DMN的面積分別為S1,S2,求S1S2的最大值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】定義:有一組鄰邊均和一條對角線相等的四邊形叫做鄰和四邊形.

1)如圖1,四邊形ABCD中,∠ABC70°,∠BAC40°,∠ACD=∠ADC80°,求證:四邊形ABCD是鄰和四邊形.

2)如圖2,是由50個小正三角形組成的網(wǎng)格,每個小正三角形的頂點稱為格點,已知A,BC三點的位置如圖,請在網(wǎng)格圖中標出所有的格點D,使得以A,BC,D為頂點的四邊形為鄰和四邊形.

3)如圖3,△ABC中,∠ABC90°,AB4BC4,若存在一點D,使四邊形ABCD是鄰和四邊形,求鄰和四邊形ABCD的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知:正方形ABCD中,MAN=45°,∠MAN繞點A順時針旋轉(zhuǎn),它的兩邊分別交CB、DC(或它們的延長線)于點MN

(1)MAN繞點A旋轉(zhuǎn)到BM=DN時(如圖1),請你直接寫出BMDNMN的數(shù)量關系:__________

(2)當MAN繞點A旋轉(zhuǎn)到BMDN時(如圖2),(1)中的結論是否仍然成立?若成立,請給予證明;若不成立,請你寫出正確結論再給予證明.

(3)當MAN繞點A旋轉(zhuǎn)到如圖3的位置時,線段BM、DNMN之間又有怎樣的數(shù)量關系?請寫出直接寫出結論

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖(1),在平面直角坐標系中,點,點,點從點出發(fā),沿1個單位每秒的速度勻速運動,同時點從點出發(fā),沿軸正方向以2個單位每秒的速度勻速運動.,交于點,交軸于點.當點到達點時,兩點同時停止運動,設運動的時間為秒.在整個運動過程中,設的重疊部分的面積為

1)求當為何值時,點與點在同一直線上;

2)求關于的函數(shù)關系式;

3)在圖(3)中畫出關于的函數(shù)圖象,直接寫出的最大值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,邊長為6的正方形ABCD,動點P、Q各從點AD同時出發(fā),分別沿邊AD,DC方向運動,且速度均為每秒1個單位長度.

1AQBP關系為________________;

2)如圖2,當點P運動到線段AD的中點處時,AQBP交于點E,試探究∠CEQ和∠BCE滿足怎樣的數(shù)量關系;

3)如圖3,將正方形變?yōu)榱庑吻摇?/span>BAD=60°,其余條件不變,設運動t秒后,點P仍在線段AD上,AQBDF,且△BPQ的面積為S,試求S的最小值,及當S取最小值時∠DPF的正切值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,點A的坐標為,點B的坐標為,拋物線的頂點為C

1)若拋物線經(jīng)過點B時,求頂點C的坐標;

2)若拋物線與線段恰有一個公共點,結合函數(shù)圖象,求a的取值范圍;

3)若滿足不等式x的最大值為3,直接寫出實數(shù)a的值.

查看答案和解析>>

同步練習冊答案