【題目】如圖,已知:EF∥AD,∠1=∠2,∠B=55°,求∠BDG的大。
請同學(xué)們在下面的橫線上把解答過程補(bǔ)充完整:
解:∵ EF//AD, (已知)
∴ ∠2=∠3, ( )
又∵ ∠1=∠2, (已知)
∴ ∠1=∠3, (等量代換)
∴ ,(內(nèi)錯(cuò)角相等,兩直線平行)
∴ ∠B+∠BDG=180°, ( )
∵ ∠B=55°, (已知)
∴ ∠BDG = .
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】國學(xué)經(jīng)典進(jìn)校園,傳統(tǒng)文化潤心靈,某校開設(shè)了“圍棋入門”、“詩歌漢字”、“翰墨飄香”、“史學(xué)經(jīng)典”四門拓展課(每位學(xué)生必須且只選其中一門).
(1)學(xué)校對八年級部分學(xué)生進(jìn)行選課調(diào)查,
得到如圖所示的統(tǒng)計(jì)圖,請估計(jì)該校八年級420名學(xué)生選“詩歌漢字”的人數(shù).
(2)“翰墨飄香”書畫社的甲、乙、丙三人的書法水平相當(dāng),學(xué)校決定從這三名同學(xué)中任選兩名參加市書法比賽,求甲和乙被選中的概率.(要求列表或畫樹狀圖)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】正方形A1B1C1O,A2B2C2C1,A3B3C3C2,…按如圖的方式放置.點(diǎn)A1,A2,A3,…和點(diǎn)C1,C2,C3,…分別在直線y=x+1和x軸上,則點(diǎn)A6的坐標(biāo)是( )
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,在矩形ABCD中,M、N分別是邊AD、BC的中點(diǎn),E、F分別是線段BM、CM的中點(diǎn).
(1)求證:△ABM≌△DCM;
(2)判斷四邊形MENF是什么特殊四邊形,并證明你的結(jié)論.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在Rt△ABO中,∠AOB=90°,OA=,OB=4,分別以OA、OB邊所在的直線建立平面直角坐標(biāo)系,D為x軸正半軸上一點(diǎn),以OD為一邊在第一象限內(nèi)作等邊△ODE.
(1)如圖①,當(dāng)E點(diǎn)恰好落在線段AB上時(shí),求E點(diǎn)坐標(biāo);
(2)在(Ⅰ)問的條件下,將△ODE沿x軸的正半軸向右平移得到△O′D′E′,O′E′、D′E′分別交AB于點(diǎn)G、F(如圖②)求證OO′=E′F;
(3)若點(diǎn)D沿x軸正半軸向右移動,設(shè)點(diǎn)D到原點(diǎn)的距離為x,△ODE與△AOB重疊部分的面積為y,請直接寫出y與x的函數(shù)關(guān)系式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,一次函數(shù)(a≠0)的圖象與反比例函數(shù)的圖象交于第二、第四象限內(nèi)的A、B兩點(diǎn),與軸交于點(diǎn)C,過點(diǎn)A作AH⊥軸,垂足為點(diǎn)H,OH=3,tan∠AOH=,點(diǎn)B的坐標(biāo)為(,-2).
(1)求該反比例函數(shù)和一次函數(shù)的解析式;
(2)求△AHO的周長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖①,在△ABC中,∠ACB=90°,BC=AC,CE是過點(diǎn)C的一條直線,且A、B在CE的異側(cè),AD⊥CE于D,BE⊥CE于E.
(1)求證:AD=DE+BE.
(2)若直線CE繞點(diǎn)C旋轉(zhuǎn),使A、B在CE的同側(cè)時(shí)(如圖②),AD與DE、BE的關(guān)系如何?請予以證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】“五一”期間,部分同學(xué)隨家長一同到某公園游玩,下面是購買門票時(shí),甲同學(xué)與其爸爸的對話(如圖),試根據(jù)圖中的信息,解決下列問題:
(1)本次共去了幾個(gè)成人,幾個(gè)學(xué)生?
(2)甲同學(xué)所說的另一種購票方式,是否可以省錢?試說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,E、F是平行四邊行ABCD的對角線AC上的 兩點(diǎn),AE=CF。
求證:(1)△ADF≌△CBE
(2)EB∥DF.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com