【題目】在平面直角坐標(biāo)系中,一次函數(shù)y=﹣x+2的圖象交x軸、y軸分別于A、B兩點,交直線y=kx于P.
(1)求點A、B的坐標(biāo);
(2)若OP=PA,求k的值;
(3)在(2)的條件下,C是線段BP上一點,CE⊥x軸于E,交OP于D,若CD=2ED,求C點的坐標(biāo).
【答案】(1)點A的坐標(biāo)為(4,0),點B的坐標(biāo)為(0,2);(2)k=;(3)點C的坐標(biāo)為(1,).
【解析】
(1)分別令和求解即可得;
(2)先根據(jù)等腰三角形的性質(zhì)可求出點P的橫坐標(biāo),再根據(jù)可求出點P的坐標(biāo),然后代入即可得;
(3)設(shè)點C的坐標(biāo)為,從而可得點D的坐標(biāo),再根據(jù)“”列出方程求解即可得.
(1)對于
當(dāng)時,,則點B的坐標(biāo)為
當(dāng)時,,解得,則點A的坐標(biāo)為;
(2)∵
∴是等腰三角形
點P的橫坐標(biāo)為
當(dāng)時,
∴點P的坐標(biāo)為
∵點P在直線上
∴
解得;
(3)設(shè)點C的坐標(biāo)為,則點D的坐標(biāo)為,點E的坐標(biāo)為
∴,
∵
∴
解得
則
故點C的坐標(biāo)為.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】州政府投資3個億擬建的恩施民族高中,它位于北緯31°,教學(xué)樓窗戶朝南,窗戶高度為h米,此地一年的冬至這一天的正午時刻太陽光與地面的夾角最小為α,夏至這一天的正午時刻太陽光與地面的夾角最大為β.若你是一名設(shè)計師,請你為教學(xué)樓的窗戶設(shè)計一個直角形遮陽蓬BCD,要求它既能最大限度地遮擋夏天炎熱的陽光,又能最大限度地使冬天溫暖的陽光射入室內(nèi)(如圖).根據(jù)測量測得∠α=32.6°,∠β=82.5°,h=2.2米.請你求出直角形遮陽蓬BCD中BC與CD的長各是多少?(結(jié)果精確到0.1米)
(參考數(shù)據(jù):sin32.6°=0.54,sin82.5°=0.99,tan32.6°=0.64,tan82.5°=7.60)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】汽車超速行駛是交通安全的重大隱患,為了有效降低交通事故的發(fā)生,許多道路在事故易發(fā)路段設(shè)置了區(qū)間測速如圖,學(xué)校附近有一條筆直的公路l,其間設(shè)有區(qū)間測速,所有車輛限速40千米/小時數(shù)學(xué)實踐活動小組設(shè)計了如下活動:在l上確定A,B兩點,并在AB路段進行區(qū)間測速.在l外取一點P,作PC⊥l,垂足為點C.測得PC=30米,∠APC=71°,∠BPC=35°.上午9時測得一汽車從點A到點B用時6秒,請你用所學(xué)的數(shù)學(xué)知識說明該車是否超速.(參考數(shù)據(jù):sin35°≈0.57,cos35°≈0.82,tan35°≈0.70,sin71°≈0.95,cos71°≈0.33,tan71°≈2.90)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在半徑為5的⊙O中,弦AB=8,P是弦AB所對的優(yōu)弧上的動點,連接AP,過點A作AP的垂線交射線PB于點C,當(dāng)△PAB是等腰三角形時,線段BC的長為______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知AB是⊙O的直徑,點C在⊙O上,過點C的直線與AB的延長線交于點P,AC=PC,∠COB=2∠PCB.
(1)求證:PC是⊙O的切線;
(2)求證:BC=AB;
(3)點M是弧AB的中點,CM交AB于點N,若AB=4,求MNMC的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在正方形ABCD中,E是BC的中點,F是CD上一點,AE⊥EF.有下列結(jié)論:①∠BAE=30°;②射線FE是∠AFC的角平分線;③AE2=ADAF;④AF=AB+CF.其中正確結(jié)論為是______.(填寫所有正確結(jié)論的序號)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,拋物線y=ax22a2x(a0)的對稱軸與x軸交于點P.
(1)求點P的坐標(biāo)(用含a的代數(shù)式表示);
(2)記函數(shù)y=x+2(1x2)的圖象為圖形M,若拋物線與圖形M恰有一個公共點,結(jié)合函數(shù)的圖象,求a的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,方格紙中的每個小方格都是邊長為1個單位的正方形,在建立平面直角坐標(biāo)系后,△ABC的頂點均在格點上,點B的坐標(biāo)為(0,1).
(1)畫出△ABC向右平移3個單位長度所得的△A1B1C1;寫出C1點的坐標(biāo);
(2)畫出將△ABC繞點B按逆時針方向旋轉(zhuǎn)90°所得的△A2B2C2;寫出C2點的坐標(biāo);
(3)在(2)的條件下求點A所經(jīng)過路徑的長度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】劉徵是我國古代最杰出的數(shù)學(xué)家之一,他在《九算術(shù)圓田術(shù))中用“割圓術(shù)”證明了圓面積的精確公式,并給出了計算圓周率的科學(xué)方法(注:圓周率=圓的周長與該圓直徑的比值)“割圓術(shù)”就是以“圓內(nèi)接正多邊形的面積”,來無限逼近“圓面積”,劉徽形容他的“割圓術(shù)”說:割之彌細(xì),所失彌少,割之又割,以至于不可割,則與圓合體,而無所失矣.劉徽計算圓周率是從正六邊形開始的,易知圓的內(nèi)接正六邊形可分為六個全等的正三角形,每個三角形的邊長均為圓的半徑R.此時圓內(nèi)接正六邊形的周長為6R,如果將圓內(nèi)接正六邊形的周長等同于圓的周長,可得圓周率為3.當(dāng)正十二邊形內(nèi)接于圓時,如果按照上述方法計算,可得圓周率為_____.(參考數(shù)據(jù):sinl5°=0.26)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com