【題目】小軍同學(xué)在學(xué)校組織的社會(huì)實(shí)踐活動(dòng)中,負(fù)責(zé)了解他所居住的小區(qū)450戶具名的生活用水情況,他從中隨機(jī)調(diào)查了50戶居民的月均用水量(單位:t),并繪制了樣本的頻數(shù)分布表:

月均用水量

2≤x<3

3≤x<4

4≤x<5

5≤x<6

6≤x<7

7≤x<8

8≤x<9

頻數(shù)

2

12

10

3

2

百分比

4%

24%

30%

20%

6%

4%


(1)請根據(jù)題中已有的信息補(bǔ)全頻數(shù)分布:;
(2)如果家庭月均用水量在5≤x<8范圍內(nèi)為中等用水量家庭,請你通過樣本估計(jì)總體中的中等用水量家庭大約有多少戶?
(3)記月均用水量在2≤x<3范圍內(nèi)的兩戶為a1 , a2 , 在7≤x<8范圍內(nèi)的3戶b1、b2、b3 , 從這5戶家庭中任意抽取2戶,試完成下表,并求出抽取出的2戶家庭來自不同范圍的概率.

a1

a2

b1

b2

b3

a1

a2

b1

b2

b3

【答案】
(1)15;6;12%
(2)

解:中等用水量家庭大約有450×(20%+12%+6%)=171(戶)


(3)

解:

抽取出的2戶家庭來自不同范圍的概率:

P= =


【解析】解:(1)①50×30%=15,
②50﹣2﹣12﹣15﹣10﹣3﹣2=6,
③6÷50=0.12=12%,
所以答案是:15,6,12%;
【考點(diǎn)精析】利用列表法與樹狀圖法對題目進(jìn)行判斷即可得到答案,需要熟知當(dāng)一次試驗(yàn)要設(shè)計(jì)三個(gè)或更多的因素時(shí),用列表法就不方便了,為了不重不漏地列出所有可能的結(jié)果,通常采用樹狀圖法求概率.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB是⊙O的直徑,C是⊙O上一點(diǎn),AD垂直于過點(diǎn)C的切線,垂足為D.
(1)求證:AC平分∠BAD;
(2)若AC=2 ,CD=2,求⊙O的直徑.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】禁漁期間,我漁政船在A處發(fā)現(xiàn)正北方向B處有一艘可以船只,測得A、B兩處距離為200海里,可疑船只正沿南偏東45°方向航行,我漁政船迅速沿北偏東30°方向前去攔截,經(jīng)歷4小時(shí)剛好在C處將可疑船只攔截.求該可疑船只航行的平均速度(結(jié)果保留根號).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某家具商場計(jì)劃購進(jìn)某種餐桌、餐椅進(jìn)行銷售,有關(guān)信息如表:

原進(jìn)價(jià)(元/張)

零售價(jià)(元/張)

成套售價(jià)(元/套)

餐桌

a

270

500元

餐椅

a﹣110

70

已知用600元購進(jìn)的餐桌數(shù)量與用160元購進(jìn)的餐椅數(shù)量相同.
(1)求表中a的值;
(2)若該商場購進(jìn)餐椅的數(shù)量是餐桌數(shù)量的5倍還多20張,且餐桌和餐椅的總數(shù)量不超過200張.該商場計(jì)劃將一半的餐桌成套(一張餐桌和四張餐椅配成一套)銷售,其余餐桌、餐椅以零售方式銷售.請問怎樣進(jìn)貨,才能獲得最大利潤?最大利潤是多少?
(3)由于原材料價(jià)格上漲,每張餐桌和餐椅的進(jìn)價(jià)都上漲了10元,按照(2)中獲得最大利潤的方案購進(jìn)餐桌和餐椅,在調(diào)整成套銷售量而不改變銷售價(jià)格的情況下,實(shí)際全部售出后,所得利潤比(2)中的最大利潤少了2250元.請問本次成套的銷售量為多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖所示,給出以下四個(gè)結(jié)論:①abc=0,②a+b+c>0,③a>b,④4ac﹣b2<0;其中正確的結(jié)論有(  )

A.1個(gè)
B.2個(gè)
C.3個(gè)
D.4個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】不等式組 的解集,在數(shù)軸上表示正確的是( 。
A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一般地,當(dāng)α、β為任意角時(shí),sin(α+β)與sin(α﹣β)的值可以用下面的公式求得:sin(α+β)=sinαcosβ+cosαsinβ;sin(α﹣β)=sinαcosβ﹣cosαsinβ.例如sin90°=sin(60°+30°)=sin60°cos30°+cos60°sin30°= × + × =1.類似地,可以求得sin15°的值是

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在Rt△ABC中,∠B=90°,點(diǎn)E是AC的中點(diǎn),AC=2AB,∠BAC的平分線AD交BC于點(diǎn)D,作AF∥BC,連接DE并延長交AF于點(diǎn)F,連接FC.
求證:四邊形ADCF是菱形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某商店購進(jìn)甲乙兩種商品,甲的進(jìn)貨單價(jià)比乙的進(jìn)貨單價(jià)高20元,已知20個(gè)甲商品的進(jìn)貨總價(jià)與25個(gè)乙商品的進(jìn)貨總價(jià)相同.
(1)求甲、乙每個(gè)商品的進(jìn)貨單價(jià);
(2)若甲、乙兩種商品共進(jìn)貨100件,要求兩種商品的進(jìn)貨總價(jià)不高于9000元,同時(shí)甲商品按進(jìn)價(jià)提高10%后的價(jià)格銷售,乙商品按進(jìn)價(jià)提高25%后的價(jià)格銷售,兩種商品全部售完后的銷售總額不低于10480元,問有哪幾種進(jìn)貨方案?
(3)在條件(2)下,并且不再考慮其他因素,若甲乙兩種商品全部售完,哪種方案利潤最大?最大利潤是多少?

查看答案和解析>>

同步練習(xí)冊答案