【題目】已知△ABC中,AB=AC=BC=6.點P射線BA上一點,點Q是AC的延長線上一點,且BP=CQ,連接PQ,與直線BC相交于點D.
(1)如圖①,當點P為AB的中點時,求CD的長;
(2)如圖②,過點P作直線BC的垂線,垂足為E,當點P,Q分別在射線BA和AC的延長線上任意地移動過程中,線段BE,DE,CD中是否存在長度保持不變的線段?請說明理由.
【答案】(1)CD=;(2)線段DE的長度保持不變,理由見解析.
【解析】(1)過P點作PF∥AC交BC于F,即可構成小等邊三角形BPF,再證明△PFD≌△QCD即可求解;
(2)根據(1)分兩種情況:點P在線段AB上時,點P在BA的延長線上時分別求解即可得出結論.
解:(1)過P點作PF∥AC交BC于F,
∵點P為AB的中點,∴BP=A B=3,
∵AB=AC=BC ,∴∠B=∠ACB=∠BAC=60°,
∵PF∥AC,∴∠PFB=∠ACB=60°,∠BPF=∠BAC=60°,
∴△PBF是等邊三角形,
∴BF=FP=BP=3,∴FC=BC-BF=3,
由題意,BP=CQ,∴FP=CQ,
∵PF∥AC,∴∠DPF=∠DQC,
又∠PDF=∠QDC,∴△PFD≌△QCD,
∴CD=DF= FC= ;
(2)當點P,Q在移動的過程中,線段DE的長度保持不變,
分兩種情況討論:
①當點P在線段AB上時,
過點P作PF∥AC交BC于F,由(1)知PB=PF,
∵PE⊥BC,∴BE=EF,
由(1)知△PFD≌△QCD,CD=DF,
∴DE=EF+DF= BC=3,
②當點P在BA的延長線上時,同理可得DE=3,
∴當點P、Q在移動的過程中,線段DE的長度保持不變.
科目:初中數學 來源: 題型:
【題目】閱讀理解
∵<<,即2<<3.
∴的整數部分為2,小數部分為﹣2,
∴1<﹣1<2
∴﹣1的整數部分為1.
∴﹣1的小數部分為﹣2
解決問題:已知:a是﹣3的整數部分,b是﹣3的小數部分,
求:(1)a,b的值;
(2)(﹣a)3+(b+4)2的平方根.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】有一科技小組進行了機器人行走性能試驗,在試驗場地有A、B、C三點順次在同一筆直的賽道上,甲、乙兩機器人分別從A、B兩點同時同向出發(fā),歷時7分鐘同時到達C點,乙機器人始終以60米/分的速度行走,如圖是甲、乙兩機器人之間的距離y(米)與他們的行走時間x(分鐘)之間的函數圖象,請結合圖象,回答下列問題:
(1)A、B兩點之間的距離是米,甲機器人前2分鐘的速度為米/分;
(2)若前3分鐘甲機器人的速度不變,求線段EF所在直線的函數解析式;
(3)若線段FG∥x軸,則此段時間,甲機器人的速度為米/分;
(4)求A、C兩點之間的距離;
(5)直接寫出兩機器人出發(fā)多長時間相距28米.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,四邊形ABCD紙片中,已知∠A=160°,∠B=30°,∠C=60°,四邊形ABCD紙片分別沿EF,GH,OP,MN折疊,使A與A′、B與B′、C與C′、D與D′重合,則∠1+∠2+∠3+∠4+∠5+∠6+∠7﹣∠8的值是( 。
A. 600° B. 700° C. 720° D. 800°
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,方格紙中每個小方格都是長為1個單位的正方形,若學校位置坐標為A(1,2),解答以下問題:
(1)請在圖中建立適當的直角坐標系,并寫出圖書館B位置的坐標;
(2)若體育館位置坐標為C(-3,3),請在坐標系中標出體育館的位置,并順次連接學校、圖書館、體育館,得到△ABC,求△ABC的面積.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】為了豐富學生課外小組活動,培養(yǎng)學生動手操作能力,王老師讓學生把5m長的彩繩截成2m或1m的彩繩,用來做手工編織,在不造成浪費的前提下,你有幾種不同的截法( 。
A.1
B.2
C.3
D.4
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某校九年級10個班師生舉行畢業(yè)文藝匯演,每班2個節(jié)目,有歌唱與舞蹈兩類節(jié)目,年級統(tǒng)計后發(fā)現(xiàn)歌唱類節(jié)目數比舞蹈類節(jié)目數的2倍少4個.
(1)九年級師生表演的歌唱與舞蹈類節(jié)目數各有多少個?
(2)該校七、八年級師生有小品節(jié)目參與,在歌唱、舞蹈、小品三類節(jié)目中,每個節(jié)目的演出平均用時分別是5分鐘、6分鐘、8分鐘,預計所有演出節(jié)目交接用時共花15分鐘.若從20:00開始,22:30之前演出結束,問參與的小品類節(jié)目最多能有多少個?
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com