【題目】如圖,在直角坐標(biāo)系中,,是線段上靠近點(diǎn)的三等分點(diǎn).

(1)若點(diǎn)軸上的一動(dòng)點(diǎn),連接,當(dāng)的值最小時(shí),求出點(diǎn)的坐標(biāo)及的最小值;

(2)如圖2,過(guò)點(diǎn),交于點(diǎn),再將繞點(diǎn)作順時(shí)針?lè)较蛐D(zhuǎn),旋轉(zhuǎn)角度為,記旋轉(zhuǎn)中的三角形為,在旋轉(zhuǎn)過(guò)程中,直線與直線的交點(diǎn)為,直線與直線交于點(diǎn),當(dāng)為等腰三角形時(shí),請(qǐng)直接寫(xiě)出的值.

【答案】1;(2)α的值為45°,90°,135°,180°.

【解析】

1)作HGOBH.由HGAO,求出OG,HG,即可得到點(diǎn)H的坐標(biāo),作點(diǎn)B關(guān)于y軸的對(duì)稱點(diǎn)B′,連接BHy軸于點(diǎn)M,則B'-20),此時(shí)MB+MH的值最小,最小值等于B'H的長(zhǎng);求得直線BH的解析式為y= ,即可得到點(diǎn)M的坐標(biāo)為
2)依據(jù)△OST為等腰三角形,分4種情況畫(huà)出圖形,即可得到旋轉(zhuǎn)角的度數(shù).

解:(1)如圖1,作HGOBH

HGAO,

OB=2,OA= ,
GB= ,HG= ,
OG=OB-GB=
H,

作點(diǎn)B關(guān)于y軸的對(duì)稱點(diǎn)B′,連接BHy軸于點(diǎn)M,則B'-2,0),
此時(shí)MB+MH的值最小,最小值等于B'H的長(zhǎng).

B'-2,0),H,

B'H=

MB+MH的最小值為

設(shè)直線B'H的解析式為y=kx+b,則有

解得:

∴直線BH的解析式為

當(dāng)x=0時(shí),y=

∴點(diǎn)M的坐標(biāo)為:

2)如圖,當(dāng)OT=OS時(shí),α=75°-30°=45°;

如圖,當(dāng)OT=TS時(shí),α=90°;


如圖,當(dāng)OT=OS時(shí),α=90°+60°-15°=135°;


如圖,當(dāng)ST=OS時(shí),α=180°;

綜上所述,α的值為45°,90°,135°,180°.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在△ABC中,BCAC=6,以BC為直徑的O與邊AB相交于點(diǎn)D,DEAC,垂足為點(diǎn)E

(1)求證:點(diǎn)DAB的中點(diǎn);

(2)求點(diǎn)O到直線DE的距離.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某游樂(lè)園有一個(gè)直徑為16米的圓形噴水池,噴水池的周邊有一圈噴水頭,噴出的水柱為拋物線,在距水池中心3米處達(dá)到最高,高度為5米,且各方向噴出的水柱恰好在噴水池中心的裝飾物處匯合.如圖所示,以水平方向?yàn)?/span>x軸,噴水池中心為原點(diǎn)建立直角坐標(biāo)系.

(1)求水柱所在拋物線(第一象限部分)的函數(shù)表達(dá)式;

(2)王師傅在噴水池內(nèi)維修設(shè)備期間,噴水管意外噴水,為了不被淋濕,身高1.8米的王師傅站立時(shí)必須在離水池中心多少米以內(nèi)?

(3)經(jīng)檢修評(píng)估,游樂(lè)園決定對(duì)噴水設(shè)施做如下設(shè)計(jì)改進(jìn):在噴出水柱的形狀不變的前提下,把水池的直徑擴(kuò)大到32米,各方向噴出的水柱仍在噴水池中心保留的原裝飾物(高度不變)處匯合,請(qǐng)?zhí)骄繑U(kuò)建改造后噴水池水柱的最大高度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,為等邊三角形,,、相交于點(diǎn)于點(diǎn),且,則的長(zhǎng)為( )

A.7B.8C.9D.10

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】楊梅是漳州的特色時(shí)令水果.楊梅一上市,水果店的老板用1200元購(gòu)進(jìn)一批楊梅,很快售完;老板又用2500元購(gòu)進(jìn)第二批楊梅,所購(gòu)件數(shù)是第一批的2倍,但進(jìn)價(jià)每件比第一批多了5.

1)第一批楊梅每件進(jìn)價(jià)多少元?

2)老板以每件150元的價(jià)格銷售第二批楊梅,售出后,為了盡快售完,決定打折促銷.要使得第二批楊梅的銷售利潤(rùn)不少于320元,剩余的楊梅每件售價(jià)至少打幾折(利潤(rùn)售價(jià)進(jìn)價(jià))?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】給定關(guān)于的二次函數(shù) ,

學(xué)生甲:當(dāng)時(shí),拋物線與 軸只有一個(gè)交點(diǎn),因此當(dāng)拋物線與軸只有一個(gè)交點(diǎn)時(shí),的值為3;

學(xué)生乙:如果拋物線在軸上方,那么該拋物線的最低點(diǎn)一定在第二象限;

請(qǐng)判斷學(xué)生甲、乙的觀點(diǎn)是否正確,并說(shuō)明你的理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖:由火柴棒拼出的一列圖形,第個(gè)圖形是由個(gè)等邊三角形拼成的,通過(guò)觀察,分析發(fā)現(xiàn):第8個(gè)圖形中平行四邊形的個(gè)數(shù)( ).

A.16B.18C.20D.22

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】拋物線 y=ax2+bx+5 的頂點(diǎn)坐標(biāo)為(2,9),與 y 軸交于點(diǎn) A(0,5),與 x 軸交于點(diǎn) E、B(點(diǎn) E 在點(diǎn) B 的左側(cè)),點(diǎn) P 為拋物線上一點(diǎn).

(1)求該拋物線的解析式;

(2)過(guò)點(diǎn) A 作 AC 平行于 x 軸,交拋物線于點(diǎn) C,當(dāng)點(diǎn) P 在 AC 上方時(shí),作 PD平行于 y 軸交 AB 于點(diǎn) D,求使四邊形 APCD 的面積最大時(shí)點(diǎn) P 的坐標(biāo);

(3)設(shè) N 為 x 軸上一點(diǎn),當(dāng)以 A、E、N、P 為頂點(diǎn),AE 為一邊的四邊形是平行四邊形時(shí),求點(diǎn) P 的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】汽車超速行駛是交通安全的重大隱患,為了有效降低交通事故的發(fā)生,許多道路在事故易發(fā)路段設(shè)置了區(qū)間測(cè)速如圖,學(xué)校附近有一條筆直的公路l,其間設(shè)有區(qū)間測(cè)速,所有車輛限速40千米/小時(shí)數(shù)學(xué)實(shí)踐活動(dòng)小組設(shè)計(jì)了如下活動(dòng):在l上確定A,B兩點(diǎn),并在AB路段進(jìn)行區(qū)間測(cè)速.在l外取一點(diǎn)P,作PCl,垂足為點(diǎn)C.測(cè)得PC=30米,∠APC=71°,BPC=35°.上午9時(shí)測(cè)得一汽車從點(diǎn)A到點(diǎn)B用時(shí)6秒,請(qǐng)你用所學(xué)的數(shù)學(xué)知識(shí)說(shuō)明該車是否超速.(參考數(shù)據(jù):sin35°≈0.57,cos35°≈0.82,tan35°≈0.70,sin71°≈0.95,cos71°≈0.33,tan71°≈2.90)

查看答案和解析>>

同步練習(xí)冊(cè)答案