【題目】給定關于的二次函數(shù)

學生甲:當時,拋物線與 軸只有一個交點,因此當拋物線與軸只有一個交點時,的值為3;

學生乙:如果拋物線在軸上方,那么該拋物線的最低點一定在第二象限;

請判斷學生甲、乙的觀點是否正確,并說明你的理由.

【答案】甲錯誤,乙正確

【解析】

試題甲的觀點是錯誤的,乙的觀點是正確的.分別求出拋物線y=2x2+(6-2mx+3-mx軸只有一個交點時m的值以及拋物線在x軸上方時該拋物線的最低點的位置即可.

試題解析:甲的觀點是錯誤的.

理由如下:當拋物線軸只有一個交點時

即:

解得

時拋物線軸只有一個交點

乙的觀點是正確的

理由如下:當拋物線在軸上方時,

由上可得

即:

而對于開口向上的拋物線最低點為其頂點

頂點的橫坐標為

,且拋物線在軸上方,

即拋物線的最低點在第二象限

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,矩形紙片ABCD中,AB=4,BC=6,將△ABC沿AC折疊,使點B落在點E處,CEAD于點F,則DF的長等于_________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,經(jīng)過點A6,0)的直線ykx3與直線y=﹣x交于點B,點P從點O出發(fā)以每秒1個單位長度的速度向點A勻速運動.

1)求點B的坐標;

2)當△OPB是直角三角形時,求點P運動的時間;

3)當BP平分△OAB的面積時,直線BPy軸交于點D,求線段BD的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某市現(xiàn)在有兩種用電收費方法:

分時電表

普通電表

峰時(8:00~21:00)

谷時(21:00到次日8:00)

電價0.55元/千瓦·時

電價0.35元/千瓦·時

電價0.52元/千瓦·時

小明家所在的小區(qū)用的電表都換成了分時電表.

解決問題:

(1)小明家庭某月用電總量為千瓦·時(為常數(shù));谷時用電千瓦·時,峰時用電千瓦·時,分時計價時總價為元,普通計價時總價為元,求,與用電量的函數(shù)關系式.

(2)小明家庭使用分時電表是不是一定比普通電表合算呢?

(3)下表是路皓家最近兩個月用電的收據(jù):

谷時用電(千瓦·時)

峰時用電(千瓦·時)

181

239

根據(jù)上表,請問用分時電表是否合算?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在直角坐標系中,,是線段上靠近點的三等分點.

(1)若點軸上的一動點,連接、,當的值最小時,求出點的坐標及的最小值;

(2)如圖2,過點,交于點,再將繞點作順時針方向旋轉(zhuǎn),旋轉(zhuǎn)角度為,記旋轉(zhuǎn)中的三角形為,在旋轉(zhuǎn)過程中,直線與直線的交點為,直線與直線交于點,當為等腰三角形時,請直接寫出的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】矩形ABCD中,E在AD上,F(xiàn)在AB上,EFCE于E,DE=AF=2,矩形的周長為24,則BF的長為( 。

A. 3 B. 4 C. 5 D. 7

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】求證:相似三角形對應邊上的中線之比等于相似比.

要求:①根據(jù)給出的△ABC及線段A'B′,A′(A′=A),以線段A′B′為一邊,在給出的圖形上用尺規(guī)作出△A'B′C′,使得△A'B′C′∽△ABC,不寫作法,保留作圖痕跡;

②在已有的圖形上畫出一組對應中線,并據(jù)此寫出已知、求證和證明過程.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知如圖,拋物線的頂點D的坐標為(1,-4),且與y軸交于點

C0,3

求該函數(shù)的關系式;

求改拋物線與x軸的交點A,B的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知線段是直線上一動點,點,分別為的中點,對下列各值:①線段的長;②的周長;③的面積;④直線,之間的距離;⑤的大。渲胁粫S點的移動而改變的是_____.(填序號)

查看答案和解析>>

同步練習冊答案