【題目】求證:相似三角形對應(yīng)邊上的中線之比等于相似比.

要求:①根據(jù)給出的△ABC及線段A'B′,A′(A′=A),以線段A′B′為一邊,在給出的圖形上用尺規(guī)作出△A'B′C′,使得△A'B′C′∽△ABC,不寫作法,保留作圖痕跡;

②在已有的圖形上畫出一組對應(yīng)中線,并據(jù)此寫出已知、求證和證明過程.

【答案】(1)作圖見解析;(2)證明見解析.

【解析】

(1)作∠A'B'C=∠ABC,即可得到△A'B′C′;

(2)依據(jù)DAB的中點,D'A'B'的中點,即可得到,根據(jù)△ABC∽△A'B'C',即可得到,∠A'=∠A,進而得出△A'C'D'∽△ACD,可得

1)如圖所示,△A'B′C′即為所求;

2)已知,如圖,△ABC∽△A'B'C'=k,DAB的中點,D'A'B'的中點,

求證:=k

證明:∵DAB的中點,D'A'B'的中點,

AD=AB,A'D'=A'B'

,

∵△ABC∽△A'B'C'

,∠A'=A

,∠A'=A,

∴△A'C'D'∽△ACD

=k

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】下列說法中,錯誤的是(

A. 二次函數(shù)的圖象是開口向上的拋物線

B. 二次函數(shù)的圖象必在軸上方

C. 二次函數(shù)圖象的對稱軸是軸或與軸平行的直線

D. 二次函數(shù)圖象的頂點必在圖象的對稱軸上

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖所示,已知等邊ABC的兩個頂點的坐標為A(-40),B2,0).

1)用尺規(guī)作圖作出點C,并求出點C的坐標;

2)求ABC的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖所示,小蘭用尺規(guī)作圖作ABCAC上的高BH,作法如下:

①分別以點DE為圓心,大于DE的一半長為半徑作弧兩弧交于F;

②作射線BF,交邊AC于點H;

③以B為圓心,BK長為半徑作弧,交直線AC于點DE;

④取一點K使KBAC的兩側(cè);

所以BH就是所求作的高.其中順序正確的作圖步驟是( 。

A.①②③④B.④③①②C.②④③①D.④③②①

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖:在Rt△ABC中,∠ACB=90°,AB=6,過點C的直線MN∥AB,DAB上一點,過點DDE⊥BC,交直線MN于點E,垂足為F,連結(jié)CD,BE,

(1)當點DAB的中點時,四邊形BECD是什么特殊四邊形?說明你的理由

(2)在(1)的條件下,當∠A=   時四邊形BECD是正方形.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】以邊長為2的正方形的中心O為端點,引兩條相互垂直的射線,分別與正方形的邊交于A、B兩點,則線段AB的最小值是

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知拋物線y=ax2+bx+c過點A(0,2),且拋物線上任意不同兩點M(x1,y1),N(x2,y2)都滿足:當x1<x2<0時,(x1﹣x2)(y1﹣y2)>0;當0<x1<x2時,(x1﹣x2)(y1﹣y2)<0.以原點O為圓心,OA為半徑的圓與拋物線的另兩個交點為B,C,且BC的左側(cè),△ABC有一個內(nèi)角為60°.

(1)求拋物線的解析式;

(2)若MN與直線y=﹣2x平行,且M,N位于直線BC的兩側(cè),y1>y2,解決以下問題:

①求證:BC平分∠MBN;

②求△MBC外心的縱坐標的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知二次函數(shù)的圖象如圖所示,則下列結(jié)論:①;;,其中正確的結(jié)論的序號是(

A. ①② B. ①③ C. ③④ D. ②④

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖為和一圓的重迭情形,此圓與直線相切于點,且與交于另一點.若,,則的度數(shù)為何(

A. 50° B. 60° C. 100° D. 120°

查看答案和解析>>

同步練習冊答案