【題目】如圖,已知⊙O的半徑為2,AB為直徑,CD為弦.AB與CD交于點(diǎn)M,將 沿CD翻折后,點(diǎn)A與圓心O重合,延長(zhǎng)OA至P,使AP=OA,連接PC

(1)求CD的長(zhǎng);
(2)求證:PC是⊙O的切線;
(3)點(diǎn)G為 的中點(diǎn),在PC延長(zhǎng)線上有一動(dòng)點(diǎn)Q,連接QG交AB于點(diǎn)E.交 于點(diǎn)F(F與B、C不重合).問(wèn)GEGF是否為定值?如果是,求出該定值;如果不是,請(qǐng)說(shuō)明理由.

【答案】
(1)解:如圖,連接OC,

沿CD翻折后,點(diǎn)A與圓心O重合,

∴OM= OA= ×2=1,CD⊥OA,

∵OC=2,

∴CD=2CM=2 =2 =2


(2)證明:∵PA=OA=2,AM=OM=1,CM= CD= ,∠CMP=∠OMC=90°,

∴PC= = =2 ,

∵OC=2,PO=2+2=4,

∴PC2+OC2=(2 2+22=16=PO2,

∴∠PCO=90°,

∴PC是⊙O的切線


(3)解:GEGF是定值,證明如下,

連接GO并延長(zhǎng),交⊙O于點(diǎn)H,連接HF

∵點(diǎn)G為 的中點(diǎn)

∴∠GOE=90°,

∵∠HFG=90°,且∠OGE=∠FGH

∴△OGE∽△FGH

=

∴GEGF=OGGH=2×4=8.


【解析】(1)利用翻折性質(zhì)可得出AM=MO=半徑的一半,運(yùn)用勾股定理可求出;(2)連OC,證垂直,可利用勾股定理逆定理,得出∠PCO=90°,即得切線;(3)利用△OGE∽△FGH把GEGF轉(zhuǎn)化為OGGH=8定值.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,已知矩形ABCD的三個(gè)頂點(diǎn)B(1,0),C(3,0),D(3,4).以A為頂點(diǎn)的拋物線y=ax2+bx+c過(guò)點(diǎn)C.動(dòng)點(diǎn)P從點(diǎn)A出發(fā),沿線段AB向點(diǎn)B運(yùn)動(dòng).同時(shí)動(dòng)點(diǎn)Q從點(diǎn)C出發(fā),沿線段CD向點(diǎn)D運(yùn)動(dòng).點(diǎn)P,Q的運(yùn)動(dòng)速度均為每秒1個(gè)單位.運(yùn)動(dòng)時(shí)間為t秒.過(guò)點(diǎn)P作PE⊥AB交AC于點(diǎn)E.

(1)直接寫出點(diǎn)A的坐標(biāo),并求出拋物線的解析式;
(2)過(guò)點(diǎn)E作EF⊥AD于F,交拋物線于點(diǎn)G,當(dāng)t為何值時(shí),△ACG的面積最大?最大值為多少?
(3)在動(dòng)點(diǎn)P,Q運(yùn)動(dòng)的過(guò)程中,當(dāng)t為何值時(shí),在矩形ABCD內(nèi)(包括邊界)存在點(diǎn)H,使以C,Q,E,H為頂點(diǎn)的四邊形為菱形?請(qǐng)直接寫出t的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知∠DAE=B,∠DAB=C,則下列結(jié)論不成立的是(

A.ADBCB.ABCDC.DAB+B=180°D.B=C

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】動(dòng)手操作:

如圖,已知ABCD,點(diǎn)A為圓心,小于AC長(zhǎng)為半徑作圓弧,分別交ABACEF兩點(diǎn),再分別以點(diǎn)E,F為圓心,大于EF長(zhǎng)為半徑作圓弧,兩條圓弧交于點(diǎn)P,作射線AP,交CD于點(diǎn)M

問(wèn)題解決:

(1)若∠ACD=78°,求∠MAB的度數(shù);

(2)CNAM,垂足為點(diǎn)N,求證:CAN≌△CMN

實(shí)驗(yàn)探究:

(3)直接寫出當(dāng)∠CAB的度數(shù)為多少時(shí)?CAM分別為等邊三角形和等腰直角三角形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知四邊形ABCD的對(duì)角線AC、BD相交于點(diǎn)O,OB=OD,BF=DE,AECF.

(1)求證:OAE≌△OCF;

(2)若OA=OD,猜想:四邊形ABCD的形狀,請(qǐng)證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】今年西寧市高中招生體育考試測(cè)試管理系統(tǒng)的運(yùn)行,將測(cè)試完進(jìn)行換算統(tǒng)分改為計(jì)算機(jī)自動(dòng)生成,現(xiàn)場(chǎng)公布成績(jī),降低了誤差,提高了透明度,保證了公平.考前張老師為了解全市初三男生考試項(xiàng)目的選擇情況(每人限選一項(xiàng)),對(duì)全市部分初三男生進(jìn)行了調(diào)查,將調(diào)查結(jié)果分成五類:A、實(shí)心球(2kg);B、立定跳遠(yuǎn);C、50米跑;D、半場(chǎng)運(yùn)球;E、其它.并將調(diào)查結(jié)果繪制成以下兩幅不完整的統(tǒng)計(jì)圖,請(qǐng)你根據(jù)統(tǒng)計(jì)圖解答下列問(wèn)題:

(1)將上面的條形統(tǒng)計(jì)圖補(bǔ)充完整;
(2)假定全市初三畢業(yè)學(xué)生中有5500名男生,試估計(jì)全市初三男生中選50米跑的人數(shù)有多少人?
(3)甲、乙兩名初三男生在上述選擇率較高的三個(gè)項(xiàng)目:B、立定跳遠(yuǎn);C、50米跑;D、半場(chǎng)運(yùn)球中各選一項(xiàng),同時(shí)選擇半場(chǎng)運(yùn)球、立定跳遠(yuǎn)的概率是多少?請(qǐng)用列表法或畫(huà)樹(shù)形圖的方法加以說(shuō)明并列出所有等可能的結(jié)果.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,∠AOB的邊OBx軸正半軸重合,點(diǎn)POA上的一動(dòng)點(diǎn),點(diǎn)N(6,0)是OB上的一定點(diǎn),點(diǎn)MON的中點(diǎn),∠AOB=30°,要使PM+PN最小,則點(diǎn)P的坐標(biāo)為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】(8分)如圖,在△ABC中,ADBCD,AE平分∠DAC,BAC=80°,B=60°,求∠AEC的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,點(diǎn)C是線段AB上的一點(diǎn),分別以ACBC為邊在AB的同側(cè)作正方形ACDE和正方形CBFG,連接EGBGBE,當(dāng)BC1時(shí),△BEG的面積記為S1,當(dāng)BC2時(shí),△BEG的面積記為S2……,以此類推,當(dāng)BCn時(shí),△BEG的面積記為Sn,則S2020S2019的值為____

查看答案和解析>>

同步練習(xí)冊(cè)答案