【題目】某校開展以“迎新年”為主題的藝術(shù)活動,舉辦了四個項(xiàng)目的比賽.它們分別是:A演講、B唱歌、C書法、D繪畫.要求每位同學(xué)必須參加且限報(bào)一項(xiàng).以九(一)班為樣本進(jìn)行統(tǒng)計(jì),并將統(tǒng)計(jì)結(jié)果繪制如下兩幅統(tǒng)計(jì)圖,請你結(jié)合圖中所給出的信息解答下列問題:
(1)求出參加繪畫比賽的學(xué)生人數(shù)占全班總?cè)藬?shù)的百分比;
(2)求出扇形統(tǒng)計(jì)圖中參加書法比賽的學(xué)生所在的扇形圓心角的度數(shù);
(3)若該校九年級學(xué)生共有500人,請你估計(jì)這次活動中參加演講和唱歌的學(xué)生共有多少人?
【答案】(1)4%(2)72°(3)380
【解析】
解:(1) ∵參加唱歌的B項(xiàng)人數(shù)為25人 ,占全班人數(shù)的百分比為50%,
∴九年(一)班學(xué)生數(shù)為25÷50%=50(人) .
∴參加繪畫的D項(xiàng)人數(shù)占全班總?cè)藬?shù)的百分比為2÷50=4%.
(2) 360°×(1-26%-50%-4%)=72°.
∴參加書法比賽的C項(xiàng)所在的扇形圓心角的度數(shù)是72°.
(3)根據(jù)題意:A項(xiàng)和B項(xiàng)學(xué)生的人數(shù)和占全班總?cè)藬?shù)的76%,
∴500×76﹪=380(人).
∴估計(jì)這次活動中參加演講和唱歌的學(xué)生共有380人.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,添加下列條件仍然不能使ABCD成為菱形的是( 。
A. AB=BC B. AC⊥BD C. ∠ABC=90° D. ∠1=∠2
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在正方ABCD中,E是AB邊上任一點(diǎn),BG⊥CE,垂足為O,交AC于點(diǎn)F,交AD于點(diǎn)G.
(1)證明:BE=AG;
(2)E位于什么位置時,∠AEF=∠CEB?說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在長方形中,,,將長方形繞點(diǎn)逆時針旋轉(zhuǎn),點(diǎn)、、分別對應(yīng)點(diǎn)、、.
(1)畫出長方形;
(2)聯(lián)結(jié)、、,請用含有、的代數(shù)式表示的面積;
(3)如果交于點(diǎn),請用含有、的代數(shù)式表示的長度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某水果店在兩周內(nèi),將標(biāo)價為10元/斤的某種水果,經(jīng)過兩次降價后的價格為8.1元/斤,并且兩次降價的百分率相同.
(1)求該種水果每次降價的百分率;
(2)從第一次降價的第1天算起,第x天(x為整數(shù))的售價、銷量及儲存和損耗費(fèi)用的相關(guān)信息如表所示.已知該種水果的進(jìn)價為4.1元/斤,設(shè)銷售該水果第x(天)的利潤為y(元),求y與x(1≤x<15)之間的函數(shù)關(guān)系式,并求出第幾天時銷售利潤最大?
時間x(天) | 1≤x<9 | 9≤x<15 | x≥15 |
售價(元/斤) | 第1次降價后的價格 | 第2次降價后的價格 | |
銷量(斤) | 80﹣3x | 120﹣x | |
儲存和損耗費(fèi)用(元) | 40+3x | 3x2﹣64x+400 |
(3)在(2)的條件下,若要使第15天的利潤比(2)中最大利潤最多少127.5元,則第15天在第14天的價格基礎(chǔ)上最多可降多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,BD是△ABC的角平分線,點(diǎn)E,F分別在BC,AB上,且DE∥AB,BE=AF.
(1)求證:四邊形ADEF是平行四邊形;
(2)若∠ABC=60°,BD=4,求平行四邊形ADEF的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】點(diǎn)C在直線AB上,且線段AB=16,若AB:BC=8:3,E是AC的中點(diǎn),D是AB的中點(diǎn),則線段DE=_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB是⊙O的直徑,C是⊙O上一點(diǎn),D是的中點(diǎn),BD交AC于點(diǎn)E,過點(diǎn)D作DF∥AC交BA的延長線于點(diǎn)F.
(1)求證:DF是⊙O的切線;
(2)若AF=2,FD=4,求tan∠BEC的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖①,已知線段 AB=12cm,點(diǎn) C 為 AB 上的一個動點(diǎn),點(diǎn) D,E 分別是 AC 和 BC的中點(diǎn).
(1)若 AC=4cm,求 DE 的長.
(2)若 AC=acm(不超過 12cm),求 DE 的長.
(3)知識遷移:如圖②,已知∠AOB=120°,過角的內(nèi)部任意一點(diǎn) C 畫射線OC,若OD,OE 分別平分∠AOC 和∠BOC,求∠DOE 的度數(shù).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com