【題目】李航想利用太陽光測(cè)量樓高.他帶著皮尺來到一棟樓下,發(fā)現(xiàn)對(duì)面墻上有這棟樓的影子,針對(duì)這種情況,他設(shè)計(jì)了一種測(cè)量方案,具體測(cè)量情況如下:如示意圖,李航邊移動(dòng)邊觀察,發(fā)現(xiàn)站到點(diǎn)E處時(shí),可以使自己落在墻上的影子與這棟樓落在墻上的影子重疊,且高度恰好相同.此時(shí),測(cè)得李航落在墻上的影子高度CD=1.2m,CE=0.6m,CA=30m(點(diǎn)A、E、C在同一直線上).已知李航的身高EF是1.6m,請(qǐng)你幫李航求出樓高AB.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形ABCD中,AB=5cm,在邊CD上適當(dāng)選定一點(diǎn)E,沿直線AE把△ADE折疊,使點(diǎn)D恰好落在邊BC上一點(diǎn)F處,且量得BF=12cm.求:(1)AD的長;(2)DE的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在直線l上依次擺放著七個(gè)正方形,已知斜放置的三個(gè)正方形的面積分別為1,1.21,1.44,正放置的四個(gè)正方形的面積為S1、S2、S3、S4,則S1+2S2+2S3+S4=_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,若二次函數(shù)y=ax2+bx+c(a≠0)圖象的對(duì)稱軸為x=1,與y軸交于點(diǎn)C,與x軸交于點(diǎn)A、點(diǎn)B(﹣1,0),則
①二次函數(shù)的最大值為a+b+c;
②a﹣b+c<0;
③b2﹣4ac<0;
④當(dāng)y>0時(shí),﹣1<x<3,其中正確的個(gè)數(shù)是( 。
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形ABCD中,∠BAD=120°,∠B=∠D=90°,在BC,CD上分別找一點(diǎn)M,N,使△AMN周長最小時(shí),則∠AMN+∠ANM的度數(shù)是________
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在“母親節(jié)”期間,某校部分團(tuán)員參加社會(huì)公益活動(dòng),準(zhǔn)備購進(jìn)一批許愿瓶進(jìn)行銷售,并將所得利潤捐助給慈善機(jī)構(gòu).根據(jù)市場調(diào)查,這種許愿瓶一段時(shí)間內(nèi)的銷售量 (單位:個(gè))與銷售單價(jià) (單位:元/個(gè))之間的對(duì)應(yīng)關(guān)系如圖所示:
(1) 與之間的函數(shù)關(guān)系是 .
(2)若許愿瓶的進(jìn)價(jià)為6元/個(gè),按照上述市場調(diào)查的銷售規(guī)律,求銷售利潤 (單位:元)與銷售單價(jià) (單位:元/個(gè))之間的函數(shù)關(guān)系式;
(3)若許愿瓶的進(jìn)貨成本不超過900元,要想獲得最大利潤,試確定這種許愿瓶的銷售單價(jià),并求出此時(shí)的最大利潤.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖:已知等邊△ABC中,D是AC的中點(diǎn),E是BC延長線上的一點(diǎn),且CE=CD,DM⊥BC,垂足為M,
(1)求證:M是BE的中點(diǎn).
(2)若CD=1,DE=,求△ABD的周長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(10分)如圖下圖所示,已知AB//CD, ∠B=30°,∠D=120°;
(1)若∠E=60°,則∠E=______;
(2)請(qǐng)?zhí)剿鳌螮與∠F之間滿足的數(shù)量關(guān)系?說明理由.
(3)如下圖所示,已知EP平分∠BEF,FG平分∠EFD,反向延長FG交EP于點(diǎn)P,求∠P的度數(shù);
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB是⊙O的直徑,點(diǎn)C是⊙O上一點(diǎn),AD與過點(diǎn)C的切線垂直,垂足為點(diǎn)D,直線DC與AB的延長線相交于點(diǎn)P,弦CE平分∠ACB,交AB點(diǎn)F,連接BE.
(1)求證:AC平分∠DAB;
(2)求證:PC=PF;
(3)若tan∠ABC=,AB=14,求線段PC的長.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com