【題目】已知是關(guān)于的函數(shù),若其函數(shù)圖象經(jīng)過點(diǎn),則稱點(diǎn)為函數(shù)圖象上的“郡點(diǎn)”,例如:上存在“郡點(diǎn)”

1)直線___________(填寫直線解析式)上的每一個(gè)點(diǎn)都是“郡點(diǎn)”,雙曲線上的“郡點(diǎn)”是___________;

2)若拋物線上有“郡點(diǎn)”,且“郡點(diǎn)”、(點(diǎn)和點(diǎn)可以重合)的坐標(biāo)為、,求的最小值.

3)若函數(shù)的圖象上存在唯一的一個(gè)郡點(diǎn),且當(dāng),的最小值,求的值.

【答案】1;;(2;(3的值為

【解析】

1)根據(jù)郡點(diǎn)的定義得yx時(shí),圖象經(jīng)過點(diǎn)Ptt);yx,函數(shù)圖象經(jīng)過點(diǎn)Pt,t),即可求解;

2)由題意得:yx,即:yx2+(a1xa2a2x,整理得:

x2axa2a20,由韋達(dá)定理,即可求解;

3)由題意得:yx2+(nk1xmk1x,由題意△=0得:m=(nk2k1),分當(dāng)2nk1、當(dāng)nk2、nk1三種情況,求解即可.

解:(1)由題意得:yx時(shí),圖象經(jīng)過點(diǎn)Ptt),

yx,解得:x=±1

故答案為:yx,(11)或(1,1);

2)設(shè)二次函數(shù)郡點(diǎn)

郡點(diǎn)、(點(diǎn)和點(diǎn)可以重合)

≥0

對(duì)于

a=,對(duì)稱軸a=-

時(shí),

3只有一個(gè)郡點(diǎn)

只有一個(gè)交點(diǎn)

=x

則方程有兩個(gè)相同的根,

可得

①當(dāng)2nk1時(shí),nk時(shí),m取得最小值,

即:k1)=k,

解得:k

②當(dāng)nk2時(shí),n2,m取得最小值,

即:(2k2k1)=k

x無解;

③當(dāng)nk1時(shí),n1,m取得最小值,

即:(1k2span>k1)=k,

解得:k2±(舍去負(fù)值)

故:k的值為:2

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線l1y1a(x+1)2+2l2y2=﹣(x2)21交于點(diǎn)B(1,﹣2),且分別與y軸交于點(diǎn)DE.過點(diǎn)Bx軸的平行線,交拋物線于點(diǎn)A、C,則以下結(jié)論:

①無論x取何值,y2總是負(fù)數(shù);

l2可由l1向右平移3個(gè)單位,再向下平移3個(gè)單位得到;

③當(dāng)﹣3x1時(shí),隨著x的增大,y1y2的值先增大后減。

④四邊形AECD為正方形.

其中正確的是(  )

A.1個(gè)B.2個(gè)C.3個(gè)D.4個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,要建一個(gè)長方形養(yǎng)雞場,養(yǎng)雞場的一邊靠墻(墻長25米),另三邊用竹籬笆圍成,竹籬笆的長為40米,若要圍成的養(yǎng)雞場的面積為180平方米,求養(yǎng)雞場的長、寬各為多少米,設(shè)與墻平行的一邊長為米.

1)填空:(用含的代數(shù)式表示)另一邊長為 米;

2)列出方程,并求出問題的解.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABC 為等腰直角三角形,∠ACB90°,點(diǎn) M AB 邊的中點(diǎn),點(diǎn) N 為射線 AC 上一點(diǎn),連接 BN,過點(diǎn) C CDBN 于點(diǎn) D,連接 MD,作∠BNE=∠BNA,邊 EN 交射線 MD 于點(diǎn) E,若 AB20,MD14,則 NE 的長為___.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,正ABC的邊長為2,過點(diǎn)B的直線lAB,且ABCA′BC′關(guān)于直線l對(duì)稱,D為線段BC′上一動(dòng)點(diǎn),則AD+CD的最小值是( )

A. 4 B. 3 C. 2 D. 2+

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,一次函數(shù)的圖象與反比例函數(shù)的圖象相交于第一、三象限內(nèi)的兩點(diǎn),與軸交于點(diǎn)

1)求該反比例函數(shù)和一次函數(shù)的解析式;

2)直接寫出當(dāng)時(shí),的取值范圍;

3)在軸上找一點(diǎn)使最大,求的最大值及點(diǎn)的坐標(biāo)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系xOy中,一次函數(shù)y=﹣2x的圖象與反比例函數(shù)y的圖象的一個(gè)交點(diǎn)為A(1n)

(1)求反比例函數(shù)y的表達(dá)式.

(2)若兩函數(shù)圖象的另一交點(diǎn)為B,直接寫出B的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知,二次三項(xiàng)式﹣x2+2x+3

1)關(guān)于x的一元二次方程﹣x2+2x+3=﹣mx2+mx+2m為整數(shù))的根為有理數(shù),求m的值;

2)在平面直角坐標(biāo)系中,直線y=﹣2x+n分別交x,y軸于點(diǎn)A,B,若函數(shù)y=﹣x2+2|x|+3的圖象與線段AB只有一個(gè)交點(diǎn),求n的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,在平面直角坐標(biāo)系中,拋物線yax2+bx3與直線yx+3交于點(diǎn)Am,0)和點(diǎn)B2,n),與y軸交于點(diǎn)C

1)求mn的值及拋物線的解析式;

2)在圖1中,把AOC平移,始終保持點(diǎn)A的對(duì)應(yīng)點(diǎn)P在拋物線上,點(diǎn)CO的對(duì)應(yīng)點(diǎn)分別為M,N,連接OP,若點(diǎn)M恰好在直線yx+3上,求線段OP的長度;

3)如圖2,在拋物線上是否存在點(diǎn)Q(不與點(diǎn)C重合),使QABABC的面積相等?若存在,直接寫出點(diǎn)Q的坐標(biāo);若不存在,請(qǐng)說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案