【題目】如圖,要建一個長方形養(yǎng)雞場,養(yǎng)雞場的一邊靠墻(墻長25米),另三邊用竹籬笆圍成,竹籬笆的長為40米,若要圍成的養(yǎng)雞場的面積為180平方米,求養(yǎng)雞場的長、寬各為多少米,設與墻平行的一邊長為米.
(1)填空:(用含的代數(shù)式表示)另一邊長為 米;
(2)列出方程,并求出問題的解.
【答案】(1) ;(2) 長(20-2)米,寬是(10+)米.
【解析】
首先設平行于墻的一邊為x米,則另一邊長為米,
根據(jù)矩形的面積=長×寬, 用未知數(shù)表示出雞場的面積,根據(jù)面積為180m2,可得方程,解方程即可.
(1) 設平行于墻的一邊為x米,則另一邊長為米,
故答案為: ,
(2) 設平行于墻的一邊為x米,則另一邊長為米,
根據(jù)題意得: x =180, 整理得出: x2-40x+360=0,
解得:x1=20+2 ,x2=20-2,
由于墻長25米,而20+2>25,
∴x1=20+2,不合題意舍去,
∵0<20-2<25,
∴x2=20-2,符合題意, 此時=10+,
答:此時雞場靠墻的一邊長(20-2)米,寬是(10+)米.
科目:初中數(shù)學 來源: 題型:
【題目】已知:如圖所示,在平面直角坐標系中,四邊形是矩形,,,動點從點出發(fā),沿射線方向以每秒2個單位長度的速度運動;同時,動點從點出發(fā),沿軸正半軸方向以每秒1個單位長度的速度運動,設點、點的運動時間為
(1)當時,求經過點,,三點的拋物線的解析式;
(2)當時,求的值;
(3)當線段與線段相交于點,且時,求的值;
(4)連接,當點,在運動過程中,記△與矩形重疊部分的面積為,求與的函數(shù)關系式
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】“江畔”禮品店在十一月份從廠家購進甲、乙兩種不同禮品.購進甲種禮品共花費1500元,購進乙種禮品共花費1050元,購進甲種禮品數(shù)量是購進乙種禮品數(shù)量的2倍,且購進一件乙種禮品比購進一件甲種禮品多花20元.
(1)求購進一件甲種禮品、一件乙種禮品各需多少元;
(2)元旦前夕,禮品店決定再次購進甲、乙兩種禮品共50個.恰逢該廠家對兩種禮品的價格進行調整,一件甲種禮品價格比第一次購進時提高了30%,件乙種禮品價格比第次購進時降低了10元,如果此次購進甲、乙兩種禮品的總費用不超過3100元,那么這家禮品店最多可購進多少件甲種禮品?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,在ABCD中,AB=2,BC=6,∠D=60°,點E從B點出發(fā)沿著線段BC每秒1個單位長度的速度向C運動,同時點F從B點出發(fā)沿著射線BC每秒2單位長度的速度向C運動,以EF為邊在直線BC上方作等邊△EFG,設點E、F的運動時間為t秒,其中0<t≤4.
(1)當t= 秒時,點G落在線段AD上;
(2)如圖2,連接BG,試說明:無論t為何值,BG始終平分∠ABC;
(3)求△EFG與ABCD重疊部分面積y與t之間的函數(shù)關系式,當t取何值時,y有最大值?并求出y的最大值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在Rt△ABC中,∠B=90°,BC>AB,在BC邊上取點D,使AB=BD,構造正方形ABDE,DE交AC于點F,作EG⊥AC交AC于點G,交BC于點H.
(1)求證:EF=DH;
(2)若AB=6,DH=2DF,求AC的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在Rt△ABC中,∠BAC=90°,∠B=60°,△ADE可以由△ABC繞點 A順時針旋轉90°得到,點D 與點B是對應點,點E與點C是對應點),連接CE,則∠CED的度數(shù)是_____.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某商場要經營一種新上市的文具,進價為20元,試營銷階段發(fā)現(xiàn):當銷售單價是25元時,每天的銷售量為250件,銷售單價每上漲1元,每天的銷售量就減少10件
(1)寫出商場銷售這種文具,每天所得的銷售利潤(元)與銷售單價(元)之間的函數(shù)關系式;
(2)求銷售單價為多少元時,該文具每天的銷售利潤最大;
(3)商場的營銷部結合上述情況,提出了A、B兩種營銷方案
方案A:該文具的銷售單價高于進價且不超過30元;
方案B:每天銷售量不少于10件,且每件文具的利潤至少為25元
請比較哪種方案的最大利潤更高,并說明理由
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知是關于的函數(shù),若其函數(shù)圖象經過點,則稱點為函數(shù)圖象上的“郡點”,例如:上存在“郡點”.
(1)直線___________(填寫直線解析式)上的每一個點都是“郡點”,雙曲線上的“郡點”是___________;
(2)若拋物線上有“郡點”,且“郡點”、(點和點可以重合)的坐標為、,求的最小值.
(3)若函數(shù)的圖象上存在唯一的一個“郡點”,且當,的最小值,求的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,AB切⊙O與點A,BE切⊙O于點E,連接AO并延長交⊙O于點C,交BE的延長線于點D,連接EC,若AD=8,tan∠DEC=,則CD=_____.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com