【題目】已知過點(2,-1),與軸交于點A,F點為(1,2).

(Ⅰ)求的值及A點的坐標(biāo);

(Ⅱ)將函數(shù)的圖象沿方向向上平移得到函數(shù),其圖象與軸交于點Q,且OQ=QF,求平移后的函數(shù)的解析式;

(Ⅲ)若點A關(guān)于的對稱點為K,請求出直線FK與軸的交點坐標(biāo).

【答案】(Ⅰ) k=-1,A(1,0);(Ⅱ)見解析;(Ⅲ)y=-7x+9;(,0).

【解析】

()將(2,-1)代入直線解析式中,求出k,即可得出結(jié)論;

()構(gòu)造直角三角形,利用勾股定理求出點Q的坐標(biāo),即可得出結(jié)論;

()先確定出點D,Q的坐標(biāo),即可判斷出∠ODQ=45°,進而求出點K的坐標(biāo),即可得出結(jié)論.

()y1=kx+1經(jīng)過點(2,-1),

2k+1=-1,

k=-1,y1=-x+1,

y=0,

x=1,

A(1,0);

()設(shè)平移后的直線解析式為y=-x+m,

Q(0,m),

如圖,過點FEFy軸于E,

F點為(1,2),

EF=1,EQ=2-m,F(xiàn)Q=OQ=m,

根據(jù)勾股定理得,EF2+EQ2=FQ2,

1+(2-m)2=m2

m=,

∴平移后的函數(shù)y2的解析式y2=x+;

③如圖,設(shè)直線y2=x+x軸的交點為D,

D(,0),Q(0,),

OD=OQ,

∴∠ODQ=45°,

A(1,0),

AD=ODOA=

連接DH,

∵點A關(guān)于y1的對稱點為K,

DK=DA=,KDQ=ODQ=45°,

∴∠ADK=90°,

K(,),

F(1,2),

∴直線FK的解析式為y=7x+9,

FKx軸的交點為(,0).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,若拋物線L1的頂點A在拋物線L2上,拋物線L2的頂點B也在拋物線L1上(點A與點B不重合),我們定義:這樣的兩條拋物L(fēng)1 , L2互為“友好”拋物線,可見一條拋物線的“友好”拋物線可以有多條.

(1)如圖2,已知拋物線L3:y=2x2﹣8x+4與y軸交于點C,試求出點C關(guān)于該拋物線對稱軸對稱的點D的坐標(biāo);
(2)請求出以點D為頂點的L3的友好拋物線L4的解析式,并指出L3與L4中y同時隨x增大而增大的自變量的取值范圍;
(3)若拋物y=a1 (x﹣m)2+n的任意一條友好拋物線的解析式為y=a2 (x﹣h)2+k,請寫出a1與a2的關(guān)系式,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,在下列條件中,不能作為判斷ABD≌△BAC的條件是( )

A. D=C,BAD=ABC B. BAD=ABC,ABD=BAC

C. BD=AC,BAD=ABC D. AD=BC,BD=AC

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,矩形OCDE的三個頂點分別是C(3,0),D(3,4),E(0,4).點A在DE上,以A為頂點的拋物線過點C,且對稱軸x=1交x軸于點B.連接EC,AC.點P,Q為動點,設(shè)運動時間為t秒.
(1)填空:點A坐標(biāo)為;拋物線的解析式為
(2)在圖①中,若點P在線段OC上從點O向點C以1個單位/秒的速度運動,同時,點Q在線段CE上從點C向點E以2個單位/秒的速度運動,當(dāng)一個點到達終點時,另一個點隨之停止運動.當(dāng)t為何值時,△PCQ為直角三角形?

(3)在圖②中,若點P在對稱軸上從點A開始向點B以1個單位/秒的速度運動,過點P做PF⊥AB,交AC于點F,過點F作FG⊥AD于點G,交拋物線于點Q,連接AQ,CQ.當(dāng)t為何值時,△ACQ的面積最大?最大值是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,直線y=2x+1與雙曲線y= 的一個交點為A(m,﹣3).
(1)求雙曲線的表達式;
(2)過動點P(n,0)(n<0)且垂直于x軸的直線與直線y=2x+1和雙曲線y= 的交點分別為B,C,當(dāng)點B位于點C上方時,直接寫出n的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,在△ABC中,BP、CP分別是∠ABC和∠ACB的角平分線,∠BPC=134°,求∠A的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,BDACD.若∠A:ABC:ACB=3:4:5,E為線段BD上任一點.

(1)試求∠ABD的度數(shù);

(2)求證:∠BEC>∠A.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在“雙十二”期間,A,B兩個超市開展促銷活動,活動方式如下:

A超市:購物金額打9折后,若超過2000元再優(yōu)惠300元;

B超市:購物金額打8

某學(xué)校計劃購買某品牌的籃球做獎品,該品牌的籃球在AB兩個超市的標(biāo)價相同根據(jù)商場的活動方式:

(1)若一次性付款4200元購買這種籃球,則在B商場購買的數(shù)量比在A商場購買的數(shù)量多5請求出這種籃球的標(biāo)價

(2)學(xué)校計劃購買100個籃球,請你設(shè)計一個購買方案,使所需的費用最少.(直接寫出方案

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】中,,BDAC邊上的中線,過點C于點E,過點ABD的平行線,交CE的延長線于點F,在AF的延長線上截取,連接BG,DF.

求證:

求證:四邊形BDFG為菱形;

,求四邊形BDFG的周長.

查看答案和解析>>

同步練習(xí)冊答案