【題目】如圖,△ABC 為等邊三角形,D、E 分別是邊 AC、BC 上的點(diǎn),且AD=CE,AE 與 BD 相交于點(diǎn) P.
(1)求∠BPE 的度數(shù);
(2)若 BF⊥AE 于點(diǎn) F,試判斷 BP 與 PF 的數(shù)量關(guān)系并說(shuō)明理由.
【答案】(1)∠BPE=60°;(2)PF=BP.
【解析】
試題利用“SAS”易證△ABD≌△CAE, 所以∠CAE=∠ABD,即可得∠BPE=∠ABD+∠BAP=∠BAP+∠CAE=∠BAC=60°;(2)利用“在直角三角形中,30°的銳角所對(duì)的直角邊等于斜邊的一半”即可得結(jié)論.
試題解析:
∵△ABC為等邊三角形
∴∠C=∠BAD=∠60°,AB=AC
在△ABD與△CAE中
∴△ABD≌△CAE
∴∠CAE=∠ABD
∵∠BPE=∠ABD+∠BAP
∴∠BPE=∠BAP+∠CAE=∠BAC=60°
(2)∵BF⊥AE,∠BPE=60°
∴∠PBF=30°
∴PF=BP
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】定義:有一組鄰邊相等,并且它們的夾角是直角的凸四邊形叫做等腰直角四邊形.
(1)如圖1,等腰直角四邊形ABCD,AB=BC,∠ABC=90°,
①若AB=CD=1,AB//CD,求對(duì)角線BD的長(zhǎng).
②若AC⊥BD,求證:AD=CD.
(2)如圖2,在矩形ABCD中,AB=5,BC=9,點(diǎn)P是對(duì)角線BD上一點(diǎn),且BP=2PD,過(guò)點(diǎn)P作直線分別交邊AD,BC于點(diǎn)E,F(xiàn),使四邊形ABFE是等腰直角四邊形.求AE的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】2018年秋,珊瑚中學(xué)開(kāi)啟“珊中大閱讀”活動(dòng),為了充實(shí)漂流書(shū)吧藏書(shū),號(hào)召全校學(xué)生捐書(shū),得到各班的大力支持.同時(shí),本部校區(qū)的兩個(gè)年級(jí)組也購(gòu)買(mǎi)藏書(shū)充實(shí)學(xué)校圖書(shū)室,初二年級(jí)組購(gòu)買(mǎi)了甲、乙兩種自然科學(xué)書(shū)籍若干本,用去8315元;初一年級(jí)買(mǎi)了A、B兩種文學(xué)書(shū)籍若干本,用去6138元。其中A、B的數(shù)量分別與甲、乙的數(shù)量相等,且甲種書(shū)與B種書(shū)的單價(jià)相同,乙種書(shū)與A種書(shū)的單價(jià)相同.若甲種書(shū)的單價(jià)比乙種書(shū)的單價(jià)多7元,則甲種書(shū)籍比乙種書(shū)籍多買(mǎi)了_____________本.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,∠E=50°,∠BAC=50°,∠D=110°,求∠ABD的度數(shù).
請(qǐng)完善解答過(guò)程,并在括號(hào)內(nèi)填寫(xiě)相應(yīng)的理論依據(jù).
解:∵∠E=50°,∠BAC=50°,(已知)
∴∠E= (等量代換)
∴ ∥ .( )
∴∠ABD+∠D=180°.( )
∴∠D=110°,(已知)
∴∠ABD=70°.(等式的性質(zhì))
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,正方形 ABCD 的面積為 16,△ABE 是等邊三角形,點(diǎn) E 在正方形 ABCD 內(nèi),在對(duì)角線 AC 上有一點(diǎn) P,使 PD+PE 的和最小,則這個(gè)最小值為_____________ .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】問(wèn)題情境:如圖1,AB∥CD,∠PAB=130°,∠PCD=120°.求∠APC度數(shù).
小明的解題思路是:如圖2,過(guò)P作PE∥AB,通過(guò)平行線性質(zhì),可得∠APC=50°+60°=110°.
問(wèn)題遷移:
(1)如圖3,AD∥BC,點(diǎn)P在射線OM上運(yùn)動(dòng),當(dāng)點(diǎn)P在A、B兩點(diǎn)之間運(yùn)動(dòng)時(shí),∠ADP=∠α,∠BCP=∠β.試判斷∠CPD、∠α、∠β之間有何數(shù)量關(guān)系?請(qǐng)說(shuō)明理由;
(2)在(1)的條件下,如果點(diǎn)P在A、B兩點(diǎn)外側(cè)運(yùn)動(dòng)時(shí)(點(diǎn)P與點(diǎn)A、B、O三點(diǎn)不重合),請(qǐng)你直接寫(xiě)出∠CPD、∠α、∠β間的數(shù)量關(guān)系.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,如果AB∥CD,∠B=37°,∠D=37°,那么BC與DE平行嗎?完成下面解答過(guò)中的填空或填寫(xiě)理由.
解:∵AB∥CD ( 已知),
∴∠B= ( )
∵∠B=∠D=37°(已知)
∴ =∠D (等量代換)
∴BC∥DE ( ).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】圖1為北京城市女生從出生到15歲的平均身高統(tǒng)計(jì)圖,圖2是北京城市某女生從出生到12歲的身高統(tǒng)計(jì)圖.
請(qǐng)你根據(jù)以上信息預(yù)測(cè)該女生15歲時(shí)的身高約為 , 你的預(yù)測(cè)理由是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知一次函數(shù) y=(m﹣2)x+3﹣m 的圖象不經(jīng)過(guò)第三象限,且 m 為正整數(shù).
(1)求 m 的值.
(2)在給出的平面直角坐標(biāo)系中畫(huà)出該一次函數(shù)的圖象.
(3)當(dāng)﹣4<y<0 時(shí),根據(jù)函數(shù)圖象,求 x 的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com